Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1254 Structured version   Visualization version   GIF version

Theorem bnj1254 34802
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1254.1 (𝜑 ↔ (𝜓𝜒𝜃𝜏))
Assertion
Ref Expression
bnj1254 (𝜑𝜏)

Proof of Theorem bnj1254
StepHypRef Expression
1 bnj1254.1 . 2 (𝜑 ↔ (𝜓𝜒𝜃𝜏))
2 id 22 . . 3 (𝜏𝜏)
32bnj708 34749 . 2 ((𝜓𝜒𝜃𝜏) → 𝜏)
41, 3sylbi 217 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w-bnj17 34679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-bnj17 34680
This theorem is referenced by:  bnj554  34892  bnj557  34894  bnj967  34938  bnj999  34951  bnj907  34960  bnj1118  34977  bnj1128  34983  bnj1253  35010  bnj1450  35043
  Copyright terms: Public domain W3C validator