Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj996 Structured version   Visualization version   GIF version

Theorem bnj996 31533
Description: Technical lemma for bnj69 31586. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj996.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj996.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj996.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj996.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj996.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj996.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj996.13 𝐷 = (ω ∖ {∅})
bnj996.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj996 𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝜒,𝑚,𝑝   𝜂,𝑚,𝑝   𝜃,𝑓,𝑖,𝑛   𝜑,𝑖   𝑚,𝑛,𝜃,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑛)   𝐴(𝑧,𝑚,𝑝)   𝐵(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝑅(𝑧,𝑚,𝑝)   𝑋(𝑧,𝑚,𝑝)

Proof of Theorem bnj996
StepHypRef Expression
1 bnj996.4 . . . . 5 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
2 bnj996.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj996.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj996.13 . . . . . 6 𝐷 = (ω ∖ {∅})
5 bnj996.14 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
6 bnj996.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
72, 3, 4, 5, 6bnj917 31512 . . . . 5 (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)))
81, 7bnj771 31342 . . . 4 (𝜃 → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)))
9 3anass 1117 . . . . . 6 ((𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝜒 ∧ (𝑖𝑛𝑦 ∈ (𝑓𝑖))))
10 bnj996.6 . . . . . . 7 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
1110anbi2i 617 . . . . . 6 ((𝜒𝜂) ↔ (𝜒 ∧ (𝑖𝑛𝑦 ∈ (𝑓𝑖))))
129, 11bitr4i 270 . . . . 5 ((𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝜒𝜂))
13123exbii 1946 . . . 4 (∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ ∃𝑓𝑛𝑖(𝜒𝜂))
148, 13sylib 210 . . 3 (𝜃 → ∃𝑓𝑛𝑖(𝜒𝜂))
15 bnj996.5 . . . . . . . . . 10 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
166, 4, 15bnj986 31532 . . . . . . . . 9 (𝜒 → ∃𝑚𝑝𝜏)
1716ancli 545 . . . . . . . 8 (𝜒 → (𝜒 ∧ ∃𝑚𝑝𝜏))
18 19.42vv 2053 . . . . . . . 8 (∃𝑚𝑝(𝜒𝜏) ↔ (𝜒 ∧ ∃𝑚𝑝𝜏))
1917, 18sylibr 226 . . . . . . 7 (𝜒 → ∃𝑚𝑝(𝜒𝜏))
2019anim1i 609 . . . . . 6 ((𝜒𝜂) → (∃𝑚𝑝(𝜒𝜏) ∧ 𝜂))
21 19.41vv 2046 . . . . . 6 (∃𝑚𝑝((𝜒𝜏) ∧ 𝜂) ↔ (∃𝑚𝑝(𝜒𝜏) ∧ 𝜂))
2220, 21sylibr 226 . . . . 5 ((𝜒𝜂) → ∃𝑚𝑝((𝜒𝜏) ∧ 𝜂))
23 df-3an 1110 . . . . . 6 ((𝜒𝜏𝜂) ↔ ((𝜒𝜏) ∧ 𝜂))
24232exbii 1945 . . . . 5 (∃𝑚𝑝(𝜒𝜏𝜂) ↔ ∃𝑚𝑝((𝜒𝜏) ∧ 𝜂))
2522, 24sylibr 226 . . . 4 ((𝜒𝜂) → ∃𝑚𝑝(𝜒𝜏𝜂))
26252eximi 1931 . . 3 (∃𝑛𝑖(𝜒𝜂) → ∃𝑛𝑖𝑚𝑝(𝜒𝜏𝜂))
2714, 26bnj593 31323 . 2 (𝜃 → ∃𝑓𝑛𝑖𝑚𝑝(𝜒𝜏𝜂))
28 19.37v 2092 . . . . . . . . . 10 (∃𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑝(𝜒𝜏𝜂)))
2928exbii 1944 . . . . . . . . 9 (∃𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑚(𝜃 → ∃𝑝(𝜒𝜏𝜂)))
3029bnj132 31303 . . . . . . . 8 (∃𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑚𝑝(𝜒𝜏𝜂)))
3130exbii 1944 . . . . . . 7 (∃𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑖(𝜃 → ∃𝑚𝑝(𝜒𝜏𝜂)))
3231bnj132 31303 . . . . . 6 (∃𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑖𝑚𝑝(𝜒𝜏𝜂)))
3332exbii 1944 . . . . 5 (∃𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑛(𝜃 → ∃𝑖𝑚𝑝(𝜒𝜏𝜂)))
3433bnj132 31303 . . . 4 (∃𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑛𝑖𝑚𝑝(𝜒𝜏𝜂)))
3534exbii 1944 . . 3 (∃𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑓(𝜃 → ∃𝑛𝑖𝑚𝑝(𝜒𝜏𝜂)))
3635bnj132 31303 . 2 (∃𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑓𝑛𝑖𝑚𝑝(𝜒𝜏𝜂)))
3727, 36mpbir 223 1 𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wex 1875  wcel 2157  {cab 2783  wral 3087  wrex 3088  cdif 3764  c0 4113  {csn 4366   ciun 4708  suc csuc 5941   Fn wfn 6094  cfv 6099  ωcom 7297  w-bnj17 31263   predc-bnj14 31265   FrSe w-bnj15 31269   trClc-bnj18 31271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-tr 4944  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-fn 6102  df-om 7298  df-bnj17 31264  df-bnj18 31272
This theorem is referenced by:  bnj1021  31542
  Copyright terms: Public domain W3C validator