Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj996 Structured version   Visualization version   GIF version

Theorem bnj996 34932
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj996.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj996.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj996.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj996.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj996.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj996.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj996.13 𝐷 = (ω ∖ {∅})
bnj996.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj996 𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝜒,𝑚,𝑝   𝜂,𝑚,𝑝   𝜃,𝑓,𝑖,𝑛   𝜑,𝑖   𝑚,𝑛,𝜃,𝑝
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑛)   𝐴(𝑧,𝑚,𝑝)   𝐵(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝑅(𝑧,𝑚,𝑝)   𝑋(𝑧,𝑚,𝑝)

Proof of Theorem bnj996
StepHypRef Expression
1 bnj996.4 . . . . 5 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
2 bnj996.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj996.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj996.13 . . . . . 6 𝐷 = (ω ∖ {∅})
5 bnj996.14 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
6 bnj996.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
72, 3, 4, 5, 6bnj917 34910 . . . . 5 (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)))
81, 7bnj771 34740 . . . 4 (𝜃 → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)))
9 3anass 1095 . . . . . 6 ((𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝜒 ∧ (𝑖𝑛𝑦 ∈ (𝑓𝑖))))
10 bnj996.6 . . . . . . 7 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
1110anbi2i 622 . . . . . 6 ((𝜒𝜂) ↔ (𝜒 ∧ (𝑖𝑛𝑦 ∈ (𝑓𝑖))))
129, 11bitr4i 278 . . . . 5 ((𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝜒𝜂))
13123exbii 1848 . . . 4 (∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ ∃𝑓𝑛𝑖(𝜒𝜂))
148, 13sylib 218 . . 3 (𝜃 → ∃𝑓𝑛𝑖(𝜒𝜂))
15 bnj996.5 . . . . . . . . . 10 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
166, 4, 15bnj986 34931 . . . . . . . . 9 (𝜒 → ∃𝑚𝑝𝜏)
1716ancli 548 . . . . . . . 8 (𝜒 → (𝜒 ∧ ∃𝑚𝑝𝜏))
18 19.42vv 1957 . . . . . . . 8 (∃𝑚𝑝(𝜒𝜏) ↔ (𝜒 ∧ ∃𝑚𝑝𝜏))
1917, 18sylibr 234 . . . . . . 7 (𝜒 → ∃𝑚𝑝(𝜒𝜏))
2019anim1i 614 . . . . . 6 ((𝜒𝜂) → (∃𝑚𝑝(𝜒𝜏) ∧ 𝜂))
21 19.41vv 1950 . . . . . 6 (∃𝑚𝑝((𝜒𝜏) ∧ 𝜂) ↔ (∃𝑚𝑝(𝜒𝜏) ∧ 𝜂))
2220, 21sylibr 234 . . . . 5 ((𝜒𝜂) → ∃𝑚𝑝((𝜒𝜏) ∧ 𝜂))
23 df-3an 1089 . . . . . 6 ((𝜒𝜏𝜂) ↔ ((𝜒𝜏) ∧ 𝜂))
24232exbii 1847 . . . . 5 (∃𝑚𝑝(𝜒𝜏𝜂) ↔ ∃𝑚𝑝((𝜒𝜏) ∧ 𝜂))
2522, 24sylibr 234 . . . 4 ((𝜒𝜂) → ∃𝑚𝑝(𝜒𝜏𝜂))
26252eximi 1834 . . 3 (∃𝑛𝑖(𝜒𝜂) → ∃𝑛𝑖𝑚𝑝(𝜒𝜏𝜂))
2714, 26bnj593 34721 . 2 (𝜃 → ∃𝑓𝑛𝑖𝑚𝑝(𝜒𝜏𝜂))
28 19.37v 1991 . . . . . . . . . 10 (∃𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑝(𝜒𝜏𝜂)))
2928exbii 1846 . . . . . . . . 9 (∃𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑚(𝜃 → ∃𝑝(𝜒𝜏𝜂)))
3029bnj132 34702 . . . . . . . 8 (∃𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑚𝑝(𝜒𝜏𝜂)))
3130exbii 1846 . . . . . . 7 (∃𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑖(𝜃 → ∃𝑚𝑝(𝜒𝜏𝜂)))
3231bnj132 34702 . . . . . 6 (∃𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑖𝑚𝑝(𝜒𝜏𝜂)))
3332exbii 1846 . . . . 5 (∃𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑛(𝜃 → ∃𝑖𝑚𝑝(𝜒𝜏𝜂)))
3433bnj132 34702 . . . 4 (∃𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑛𝑖𝑚𝑝(𝜒𝜏𝜂)))
3534exbii 1846 . . 3 (∃𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ ∃𝑓(𝜃 → ∃𝑛𝑖𝑚𝑝(𝜒𝜏𝜂)))
3635bnj132 34702 . 2 (∃𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂)) ↔ (𝜃 → ∃𝑓𝑛𝑖𝑚𝑝(𝜒𝜏𝜂)))
3727, 36mpbir 231 1 𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  cdif 3973  c0 4352  {csn 4648   ciun 5015  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668   trClc-bnj18 34670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-fn 6576  df-om 7904  df-bnj17 34663  df-bnj18 34671
This theorem is referenced by:  bnj1021  34942
  Copyright terms: Public domain W3C validator