Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1097 Structured version   Visualization version   GIF version

Theorem bnj1097 34964
Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1097.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1097.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1097.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
Assertion
Ref Expression
bnj1097 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)

Proof of Theorem bnj1097
StepHypRef Expression
1 bnj1097.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1097.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
32biimpi 216 . . . . . . . 8 (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
41, 3bnj771 34747 . . . . . . 7 (𝜒 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
543ad2ant3 1135 . . . . . 6 ((𝜃𝜏𝜒) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
65adantr 480 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
7 bnj1097.5 . . . . . . . 8 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
87simp3bi 1147 . . . . . . 7 (𝜏 → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
983ad2ant2 1134 . . . . . 6 ((𝜃𝜏𝜒) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
109adantr 480 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
116, 10jca 511 . . . 4 (((𝜃𝜏𝜒) ∧ 𝜑0) → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
1211anim2i 617 . . 3 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)))
13 3anass 1094 . . 3 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) ↔ (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)))
1412, 13sylibr 234 . 2 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
15 fveqeq2 6849 . . . . . 6 (𝑖 = ∅ → ((𝑓𝑖) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
1615biimpar 477 . . . . 5 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
1716adantr 480 . . . 4 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
18 simpr 484 . . . 4 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
1917, 18eqsstrd 3978 . . 3 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
20193impa 1109 . 2 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
2114, 20syl 17 1 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  c0 4292   Fn wfn 6494  cfv 6499  w-bnj17 34669   predc-bnj14 34671   TrFow-bnj19 34679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-bnj17 34670
This theorem is referenced by:  bnj1030  34970
  Copyright terms: Public domain W3C validator