Proof of Theorem bnj1097
Step | Hyp | Ref
| Expression |
1 | | bnj1097.3 |
. . . . . . . 8
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
2 | | bnj1097.1 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
3 | 2 | biimpi 215 |
. . . . . . . 8
⊢ (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
4 | 1, 3 | bnj771 32744 |
. . . . . . 7
⊢ (𝜒 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
5 | 4 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
6 | 5 | adantr 481 |
. . . . 5
⊢ (((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
7 | | bnj1097.5 |
. . . . . . . 8
⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
8 | 7 | simp3bi 1146 |
. . . . . . 7
⊢ (𝜏 → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
9 | 8 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
10 | 9 | adantr 481 |
. . . . 5
⊢ (((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
11 | 6, 10 | jca 512 |
. . . 4
⊢ (((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
12 | 11 | anim2i 617 |
. . 3
⊢ ((𝑖 = ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))) |
13 | | 3anass 1094 |
. . 3
⊢ ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) ↔ (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))) |
14 | 12, 13 | sylibr 233 |
. 2
⊢ ((𝑖 = ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
15 | | fveqeq2 6783 |
. . . . . 6
⊢ (𝑖 = ∅ → ((𝑓‘𝑖) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))) |
16 | 15 | biimpar 478 |
. . . . 5
⊢ ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓‘𝑖) = pred(𝑋, 𝐴, 𝑅)) |
17 | 16 | adantr 481 |
. . . 4
⊢ (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓‘𝑖) = pred(𝑋, 𝐴, 𝑅)) |
18 | | simpr 485 |
. . . 4
⊢ (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
19 | 17, 18 | eqsstrd 3959 |
. . 3
⊢ (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓‘𝑖) ⊆ 𝐵) |
20 | 19 | 3impa 1109 |
. 2
⊢ ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓‘𝑖) ⊆ 𝐵) |
21 | 14, 20 | syl 17 |
1
⊢ ((𝑖 = ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |