Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1097 Structured version   Visualization version   GIF version

Theorem bnj1097 32949
Description: Technical lemma for bnj69 32978. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1097.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1097.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1097.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
Assertion
Ref Expression
bnj1097 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)

Proof of Theorem bnj1097
StepHypRef Expression
1 bnj1097.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1097.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
32biimpi 215 . . . . . . . 8 (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
41, 3bnj771 32732 . . . . . . 7 (𝜒 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
543ad2ant3 1134 . . . . . 6 ((𝜃𝜏𝜒) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
65adantr 481 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
7 bnj1097.5 . . . . . . . 8 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
87simp3bi 1146 . . . . . . 7 (𝜏 → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
983ad2ant2 1133 . . . . . 6 ((𝜃𝜏𝜒) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
109adantr 481 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
116, 10jca 512 . . . 4 (((𝜃𝜏𝜒) ∧ 𝜑0) → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
1211anim2i 617 . . 3 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)))
13 3anass 1094 . . 3 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) ↔ (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)))
1412, 13sylibr 233 . 2 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
15 fveqeq2 6778 . . . . . 6 (𝑖 = ∅ → ((𝑓𝑖) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
1615biimpar 478 . . . . 5 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
1716adantr 481 . . . 4 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
18 simpr 485 . . . 4 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
1917, 18eqsstrd 3964 . . 3 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
20193impa 1109 . 2 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
2114, 20syl 17 1 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  wss 3892  c0 4262   Fn wfn 6426  cfv 6431  w-bnj17 32653   predc-bnj14 32655   TrFow-bnj19 32663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6389  df-fv 6439  df-bnj17 32654
This theorem is referenced by:  bnj1030  32955
  Copyright terms: Public domain W3C validator