Proof of Theorem bnj1296
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1296.18 |
. . . . 5
⊢ (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) |
| 2 | 1 | opeq2d 4880 |
. . . 4
⊢ (𝜓 → 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉) |
| 3 | | bnj1296.9 |
. . . 4
⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 4 | | bnj1296.11 |
. . . 4
⊢ 𝑊 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 5 | 2, 3, 4 | 3eqtr4g 2802 |
. . 3
⊢ (𝜓 → 𝑍 = 𝑊) |
| 6 | 5 | fveq2d 6910 |
. 2
⊢ (𝜓 → (𝐺‘𝑍) = (𝐺‘𝑊)) |
| 7 | | bnj1296.7 |
. . . 4
⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
| 8 | | bnj1296.6 |
. . . . 5
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
| 9 | | bnj1296.10 |
. . . . . . . . . . 11
⊢ 𝐾 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} |
| 10 | 9 | bnj1436 34853 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 11 | | fndm 6671 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
| 12 | 11 | anim1i 615 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍)) → (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 13 | 10, 12 | bnj31 34733 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 14 | | raleq 3323 |
. . . . . . . . . . 11
⊢ (dom
𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍) ↔ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 15 | 14 | pm5.32i 574 |
. . . . . . . . . 10
⊢ ((dom
𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) ↔ (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 16 | 15 | rexbii 3094 |
. . . . . . . . 9
⊢
(∃𝑑 ∈
𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) ↔ ∃𝑑 ∈ 𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 17 | 13, 16 | sylibr 234 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍))) |
| 18 | | simpr 484 |
. . . . . . . 8
⊢ ((dom
𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
| 19 | 17, 18 | bnj31 34733 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
| 20 | 19 | bnj1265 34826 |
. . . . . 6
⊢ (𝑔 ∈ 𝐾 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
| 21 | | bnj1296.2 |
. . . . . . 7
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 22 | | bnj1296.3 |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 23 | 21, 22, 3, 9 | bnj1234 35027 |
. . . . . 6
⊢ 𝐶 = 𝐾 |
| 24 | 20, 23 | eleq2s 2859 |
. . . . 5
⊢ (𝑔 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
| 25 | 8, 24 | bnj770 34777 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
| 26 | 7, 25 | bnj835 34773 |
. . 3
⊢ (𝜓 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
| 27 | | bnj1296.4 |
. . . . 5
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
| 28 | 27 | bnj1292 34829 |
. . . 4
⊢ 𝐷 ⊆ dom 𝑔 |
| 29 | | bnj1296.5 |
. . . . 5
⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
| 30 | 29, 7 | bnj1212 34813 |
. . . 4
⊢ (𝜓 → 𝑥 ∈ 𝐷) |
| 31 | 28, 30 | bnj1213 34812 |
. . 3
⊢ (𝜓 → 𝑥 ∈ dom 𝑔) |
| 32 | 26, 31 | bnj1294 34831 |
. 2
⊢ (𝜓 → (𝑔‘𝑥) = (𝐺‘𝑍)) |
| 33 | | bnj1296.12 |
. . . . . . . . . . 11
⊢ 𝐿 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))} |
| 34 | 33 | bnj1436 34853 |
. . . . . . . . . 10
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
| 35 | | fndm 6671 |
. . . . . . . . . . 11
⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) |
| 36 | 35 | anim1i 615 |
. . . . . . . . . 10
⊢ ((ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊)) → (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
| 37 | 34, 36 | bnj31 34733 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
| 38 | | raleq 3323 |
. . . . . . . . . . 11
⊢ (dom
ℎ = 𝑑 → (∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊) ↔ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
| 39 | 38 | pm5.32i 574 |
. . . . . . . . . 10
⊢ ((dom
ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) ↔ (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
| 40 | 39 | rexbii 3094 |
. . . . . . . . 9
⊢
(∃𝑑 ∈
𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) ↔ ∃𝑑 ∈ 𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
| 41 | 37, 40 | sylibr 234 |
. . . . . . . 8
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊))) |
| 42 | | simpr 484 |
. . . . . . . 8
⊢ ((dom
ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
| 43 | 41, 42 | bnj31 34733 |
. . . . . . 7
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
| 44 | 43 | bnj1265 34826 |
. . . . . 6
⊢ (ℎ ∈ 𝐿 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
| 45 | 21, 22, 4, 33 | bnj1234 35027 |
. . . . . 6
⊢ 𝐶 = 𝐿 |
| 46 | 44, 45 | eleq2s 2859 |
. . . . 5
⊢ (ℎ ∈ 𝐶 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
| 47 | 8, 46 | bnj771 34778 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
| 48 | 7, 47 | bnj835 34773 |
. . 3
⊢ (𝜓 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
| 49 | 27 | bnj1293 34830 |
. . . 4
⊢ 𝐷 ⊆ dom ℎ |
| 50 | 49, 30 | bnj1213 34812 |
. . 3
⊢ (𝜓 → 𝑥 ∈ dom ℎ) |
| 51 | 48, 50 | bnj1294 34831 |
. 2
⊢ (𝜓 → (ℎ‘𝑥) = (𝐺‘𝑊)) |
| 52 | 6, 32, 51 | 3eqtr4d 2787 |
1
⊢ (𝜓 → (𝑔‘𝑥) = (ℎ‘𝑥)) |