Proof of Theorem bnj1296
Step | Hyp | Ref
| Expression |
1 | | bnj1296.18 |
. . . . 5
⊢ (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) |
2 | 1 | opeq2d 4811 |
. . . 4
⊢ (𝜓 → 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉) |
3 | | bnj1296.9 |
. . . 4
⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
4 | | bnj1296.11 |
. . . 4
⊢ 𝑊 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 |
5 | 2, 3, 4 | 3eqtr4g 2803 |
. . 3
⊢ (𝜓 → 𝑍 = 𝑊) |
6 | 5 | fveq2d 6778 |
. 2
⊢ (𝜓 → (𝐺‘𝑍) = (𝐺‘𝑊)) |
7 | | bnj1296.7 |
. . . 4
⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
8 | | bnj1296.6 |
. . . . 5
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
9 | | bnj1296.10 |
. . . . . . . . . . 11
⊢ 𝐾 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} |
10 | 9 | bnj1436 32819 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
11 | | fndm 6536 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
12 | 11 | anim1i 615 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍)) → (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
13 | 10, 12 | bnj31 32698 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
14 | | raleq 3342 |
. . . . . . . . . . 11
⊢ (dom
𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍) ↔ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
15 | 14 | pm5.32i 575 |
. . . . . . . . . 10
⊢ ((dom
𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) ↔ (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
16 | 15 | rexbii 3181 |
. . . . . . . . 9
⊢
(∃𝑑 ∈
𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) ↔ ∃𝑑 ∈ 𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
17 | 13, 16 | sylibr 233 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍))) |
18 | | simpr 485 |
. . . . . . . 8
⊢ ((dom
𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
19 | 17, 18 | bnj31 32698 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐾 → ∃𝑑 ∈ 𝐵 ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
20 | 19 | bnj1265 32792 |
. . . . . 6
⊢ (𝑔 ∈ 𝐾 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
21 | | bnj1296.2 |
. . . . . . 7
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
22 | | bnj1296.3 |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
23 | 21, 22, 3, 9 | bnj1234 32993 |
. . . . . 6
⊢ 𝐶 = 𝐾 |
24 | 20, 23 | eleq2s 2857 |
. . . . 5
⊢ (𝑔 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
25 | 8, 24 | bnj770 32743 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
26 | 7, 25 | bnj835 32739 |
. . 3
⊢ (𝜓 → ∀𝑥 ∈ dom 𝑔(𝑔‘𝑥) = (𝐺‘𝑍)) |
27 | | bnj1296.4 |
. . . . 5
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
28 | 27 | bnj1292 32795 |
. . . 4
⊢ 𝐷 ⊆ dom 𝑔 |
29 | | bnj1296.5 |
. . . . 5
⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
30 | 29, 7 | bnj1212 32779 |
. . . 4
⊢ (𝜓 → 𝑥 ∈ 𝐷) |
31 | 28, 30 | bnj1213 32778 |
. . 3
⊢ (𝜓 → 𝑥 ∈ dom 𝑔) |
32 | 26, 31 | bnj1294 32797 |
. 2
⊢ (𝜓 → (𝑔‘𝑥) = (𝐺‘𝑍)) |
33 | | bnj1296.12 |
. . . . . . . . . . 11
⊢ 𝐿 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))} |
34 | 33 | bnj1436 32819 |
. . . . . . . . . 10
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
35 | | fndm 6536 |
. . . . . . . . . . 11
⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) |
36 | 35 | anim1i 615 |
. . . . . . . . . 10
⊢ ((ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊)) → (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
37 | 34, 36 | bnj31 32698 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
38 | | raleq 3342 |
. . . . . . . . . . 11
⊢ (dom
ℎ = 𝑑 → (∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊) ↔ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
39 | 38 | pm5.32i 575 |
. . . . . . . . . 10
⊢ ((dom
ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) ↔ (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
40 | 39 | rexbii 3181 |
. . . . . . . . 9
⊢
(∃𝑑 ∈
𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) ↔ ∃𝑑 ∈ 𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))) |
41 | 37, 40 | sylibr 233 |
. . . . . . . 8
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 (dom ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊))) |
42 | | simpr 485 |
. . . . . . . 8
⊢ ((dom
ℎ = 𝑑 ∧ ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
43 | 41, 42 | bnj31 32698 |
. . . . . . 7
⊢ (ℎ ∈ 𝐿 → ∃𝑑 ∈ 𝐵 ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
44 | 43 | bnj1265 32792 |
. . . . . 6
⊢ (ℎ ∈ 𝐿 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
45 | 21, 22, 4, 33 | bnj1234 32993 |
. . . . . 6
⊢ 𝐶 = 𝐿 |
46 | 44, 45 | eleq2s 2857 |
. . . . 5
⊢ (ℎ ∈ 𝐶 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
47 | 8, 46 | bnj771 32744 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
48 | 7, 47 | bnj835 32739 |
. . 3
⊢ (𝜓 → ∀𝑥 ∈ dom ℎ(ℎ‘𝑥) = (𝐺‘𝑊)) |
49 | 27 | bnj1293 32796 |
. . . 4
⊢ 𝐷 ⊆ dom ℎ |
50 | 49, 30 | bnj1213 32778 |
. . 3
⊢ (𝜓 → 𝑥 ∈ dom ℎ) |
51 | 48, 50 | bnj1294 32797 |
. 2
⊢ (𝜓 → (ℎ‘𝑥) = (𝐺‘𝑊)) |
52 | 6, 32, 51 | 3eqtr4d 2788 |
1
⊢ (𝜓 → (𝑔‘𝑥) = (ℎ‘𝑥)) |