Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj911 Structured version   Visualization version   GIF version

Theorem bnj911 34563
Description: Technical lemma for bnj69 34641. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj911.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj911.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj911 ((𝑓 Fn 𝑛𝜑𝜓) → ∀𝑖(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝑓,𝑖   𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj911
StepHypRef Expression
1 bnj911.2 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
21bnj1095 34412 . 2 (𝜓 → ∀𝑖𝜓)
32bnj1350 34456 1 ((𝑓 Fn 𝑛𝜑𝜓) → ∀𝑖(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wal 1532   = wceq 1534  wcel 2099  wral 3058  c0 4323   ciun 4996  suc csuc 6371   Fn wfn 6543  cfv 6548  ωcom 7870   predc-bnj14 34319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-ex 1775  df-nf 1779  df-ral 3059
This theorem is referenced by:  bnj916  34564  bnj1014  34592
  Copyright terms: Public domain W3C validator