Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj911 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32561. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj911.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj911.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj911 | ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∀𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj911.2 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
2 | 1 | bnj1095 32332 | . 2 ⊢ (𝜓 → ∀𝑖𝜓) |
3 | 2 | bnj1350 32376 | 1 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∀𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1088 ∀wal 1540 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ∅c0 4211 ∪ ciun 4881 suc csuc 6174 Fn wfn 6334 ‘cfv 6339 ωcom 7599 predc-bnj14 32237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-ral 3058 |
This theorem is referenced by: bnj916 32484 bnj1014 32512 |
Copyright terms: Public domain | W3C validator |