![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1095 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1095.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj1095 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1095.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
2 | hbra1 3299 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥∀𝑥 ∈ 𝐴 𝜓) | |
3 | 1, 2 | hbxfrbi 1822 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1777 df-nf 1781 df-ral 3060 |
This theorem is referenced by: bnj1379 34823 bnj605 34900 bnj594 34905 bnj607 34909 bnj911 34925 bnj964 34936 bnj983 34944 bnj1093 34973 bnj1123 34979 bnj1145 34986 bnj1417 35034 |
Copyright terms: Public domain | W3C validator |