Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1095 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1095.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj1095 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1095.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
2 | hbra1 3145 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥∀𝑥 ∈ 𝐴 𝜓) | |
3 | 1, 2 | hbxfrbi 1827 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 df-ral 3069 |
This theorem is referenced by: bnj1379 32810 bnj605 32887 bnj594 32892 bnj607 32896 bnj911 32912 bnj964 32923 bnj983 32931 bnj1093 32960 bnj1123 32966 bnj1145 32973 bnj1417 33021 |
Copyright terms: Public domain | W3C validator |