| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1095 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1095.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| bnj1095 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1095.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | hbra1 3285 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥∀𝑥 ∈ 𝐴 𝜓) | |
| 3 | 1, 2 | hbxfrbi 1825 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-ral 3053 |
| This theorem is referenced by: bnj1379 34866 bnj605 34943 bnj594 34948 bnj607 34952 bnj911 34968 bnj964 34979 bnj983 34987 bnj1093 35016 bnj1123 35022 bnj1145 35029 bnj1417 35077 |
| Copyright terms: Public domain | W3C validator |