Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1095 Structured version   Visualization version   GIF version

Theorem bnj1095 34817
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1095.1 (𝜑 ↔ ∀𝑥𝐴 𝜓)
Assertion
Ref Expression
bnj1095 (𝜑 → ∀𝑥𝜑)

Proof of Theorem bnj1095
StepHypRef Expression
1 bnj1095.1 . 2 (𝜑 ↔ ∀𝑥𝐴 𝜓)
2 hbra1 3285 . 2 (∀𝑥𝐴 𝜓 → ∀𝑥𝑥𝐴 𝜓)
31, 2hbxfrbi 1825 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784  df-ral 3053
This theorem is referenced by:  bnj1379  34866  bnj605  34943  bnj594  34948  bnj607  34952  bnj911  34968  bnj964  34979  bnj983  34987  bnj1093  35016  bnj1123  35022  bnj1145  35029  bnj1417  35077
  Copyright terms: Public domain W3C validator