![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1095 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1095.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj1095 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1095.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
2 | hbra1 3296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥∀𝑥 ∈ 𝐴 𝜓) | |
3 | 1, 2 | hbxfrbi 1825 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1780 df-nf 1784 df-ral 3060 |
This theorem is referenced by: bnj1379 34139 bnj605 34216 bnj594 34221 bnj607 34225 bnj911 34241 bnj964 34252 bnj983 34260 bnj1093 34289 bnj1123 34295 bnj1145 34302 bnj1417 34350 |
Copyright terms: Public domain | W3C validator |