Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1095 Structured version   Visualization version   GIF version

Theorem bnj1095 32761
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1095.1 (𝜑 ↔ ∀𝑥𝐴 𝜓)
Assertion
Ref Expression
bnj1095 (𝜑 → ∀𝑥𝜑)

Proof of Theorem bnj1095
StepHypRef Expression
1 bnj1095.1 . 2 (𝜑 ↔ ∀𝑥𝐴 𝜓)
2 hbra1 3145 . 2 (∀𝑥𝐴 𝜓 → ∀𝑥𝑥𝐴 𝜓)
31, 2hbxfrbi 1827 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by:  bnj1379  32810  bnj605  32887  bnj594  32892  bnj607  32896  bnj911  32912  bnj964  32923  bnj983  32931  bnj1093  32960  bnj1123  32966  bnj1145  32973  bnj1417  33021
  Copyright terms: Public domain W3C validator