Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1095 Structured version   Visualization version   GIF version

Theorem bnj1095 34247
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1095.1 (𝜑 ↔ ∀𝑥𝐴 𝜓)
Assertion
Ref Expression
bnj1095 (𝜑 → ∀𝑥𝜑)

Proof of Theorem bnj1095
StepHypRef Expression
1 bnj1095.1 . 2 (𝜑 ↔ ∀𝑥𝐴 𝜓)
2 hbra1 3290 . 2 (∀𝑥𝐴 𝜓 → ∀𝑥𝑥𝐴 𝜓)
31, 2hbxfrbi 1819 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wral 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1774  df-nf 1778  df-ral 3054
This theorem is referenced by:  bnj1379  34296  bnj605  34373  bnj594  34378  bnj607  34382  bnj911  34398  bnj964  34409  bnj983  34417  bnj1093  34446  bnj1123  34452  bnj1145  34459  bnj1417  34507
  Copyright terms: Public domain W3C validator