Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1095 Structured version   Visualization version   GIF version

Theorem bnj1095 34754
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1095.1 (𝜑 ↔ ∀𝑥𝐴 𝜓)
Assertion
Ref Expression
bnj1095 (𝜑 → ∀𝑥𝜑)

Proof of Theorem bnj1095
StepHypRef Expression
1 bnj1095.1 . 2 (𝜑 ↔ ∀𝑥𝐴 𝜓)
2 hbra1 3284 . 2 (∀𝑥𝐴 𝜓 → ∀𝑥𝑥𝐴 𝜓)
31, 2hbxfrbi 1824 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1779  df-nf 1783  df-ral 3051
This theorem is referenced by:  bnj1379  34803  bnj605  34880  bnj594  34885  bnj607  34889  bnj911  34905  bnj964  34916  bnj983  34924  bnj1093  34953  bnj1123  34959  bnj1145  34966  bnj1417  35014
  Copyright terms: Public domain W3C validator