Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj951 Structured version   Visualization version   GIF version

Theorem bnj951 31933
 Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj951.1 (𝜏𝜑)
bnj951.2 (𝜏𝜓)
bnj951.3 (𝜏𝜒)
bnj951.4 (𝜏𝜃)
Assertion
Ref Expression
bnj951 (𝜏 → (𝜑𝜓𝜒𝜃))

Proof of Theorem bnj951
StepHypRef Expression
1 bnj951.1 . . 3 (𝜏𝜑)
2 bnj951.2 . . 3 (𝜏𝜓)
3 bnj951.3 . . 3 (𝜏𝜒)
41, 2, 33jca 1122 . 2 (𝜏 → (𝜑𝜓𝜒))
5 bnj951.4 . 2 (𝜏𝜃)
6 df-bnj17 31843 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
74, 5, 6sylanbrc 583 1 (𝜏 → (𝜑𝜓𝜒𝜃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1081   ∧ w-bnj17 31842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1083  df-bnj17 31843 This theorem is referenced by:  bnj966  32102  bnj967  32103  bnj910  32106  bnj1006  32117  bnj1118  32140  bnj1177  32162
 Copyright terms: Public domain W3C validator