Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj951 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj951.1 | ⊢ (𝜏 → 𝜑) |
bnj951.2 | ⊢ (𝜏 → 𝜓) |
bnj951.3 | ⊢ (𝜏 → 𝜒) |
bnj951.4 | ⊢ (𝜏 → 𝜃) |
Ref | Expression |
---|---|
bnj951 | ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj951.1 | . . 3 ⊢ (𝜏 → 𝜑) | |
2 | bnj951.2 | . . 3 ⊢ (𝜏 → 𝜓) | |
3 | bnj951.3 | . . 3 ⊢ (𝜏 → 𝜒) | |
4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒)) |
5 | bnj951.4 | . 2 ⊢ (𝜏 → 𝜃) | |
6 | df-bnj17 32711 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
7 | 4, 5, 6 | sylanbrc 584 | 1 ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∧ w-bnj17 32710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-bnj17 32711 |
This theorem is referenced by: bnj966 32969 bnj967 32970 bnj910 32973 bnj1006 32985 bnj1118 33009 bnj1177 33031 |
Copyright terms: Public domain | W3C validator |