|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj951 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj951.1 | ⊢ (𝜏 → 𝜑) | 
| bnj951.2 | ⊢ (𝜏 → 𝜓) | 
| bnj951.3 | ⊢ (𝜏 → 𝜒) | 
| bnj951.4 | ⊢ (𝜏 → 𝜃) | 
| Ref | Expression | 
|---|---|
| bnj951 | ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj951.1 | . . 3 ⊢ (𝜏 → 𝜑) | |
| 2 | bnj951.2 | . . 3 ⊢ (𝜏 → 𝜓) | |
| 3 | bnj951.3 | . . 3 ⊢ (𝜏 → 𝜒) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| 5 | bnj951.4 | . 2 ⊢ (𝜏 → 𝜃) | |
| 6 | df-bnj17 34702 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 7 | 4, 5, 6 | sylanbrc 583 | 1 ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 ∧ w-bnj17 34701 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-bnj17 34702 | 
| This theorem is referenced by: bnj966 34959 bnj967 34960 bnj910 34963 bnj1006 34975 bnj1118 34999 bnj1177 35021 | 
| Copyright terms: Public domain | W3C validator |