![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj956 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj956.1 | ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) |
Ref | Expression |
---|---|
bnj956 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj956.1 | . . . 4 ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) | |
2 | eleq2 2867 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 2 | anbi1d 624 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
4 | 3 | alexbii 1928 | . . . . 5 ⊢ (∀𝑥 𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
5 | df-rex 3095 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) | |
6 | df-rex 3095 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 306 | . . . 4 ⊢ (∀𝑥 𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
9 | 8 | abbidv 2918 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶}) |
10 | df-iun 4712 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iun 4712 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
12 | 9, 10, 11 | 3eqtr4g 2858 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 = wceq 1653 ∃wex 1875 ∈ wcel 2157 {cab 2785 ∃wrex 3090 ∪ ciun 4710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-rex 3095 df-iun 4712 |
This theorem is referenced by: bnj1316 31408 bnj953 31526 bnj1000 31528 bnj966 31531 |
Copyright terms: Public domain | W3C validator |