Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj956 Structured version   Visualization version   GIF version

Theorem bnj956 32656
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj956.1 (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵)
Assertion
Ref Expression
bnj956 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)

Proof of Theorem bnj956
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bnj956.1 . . . 4 (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵)
2 eleq2 2827 . . . . . . 7 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
32anbi1d 629 . . . . . 6 (𝐴 = 𝐵 → ((𝑥𝐴𝑦𝐶) ↔ (𝑥𝐵𝑦𝐶)))
43alexbii 1836 . . . . 5 (∀𝑥 𝐴 = 𝐵 → (∃𝑥(𝑥𝐴𝑦𝐶) ↔ ∃𝑥(𝑥𝐵𝑦𝐶)))
5 df-rex 3069 . . . . 5 (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥(𝑥𝐴𝑦𝐶))
6 df-rex 3069 . . . . 5 (∃𝑥𝐵 𝑦𝐶 ↔ ∃𝑥(𝑥𝐵𝑦𝐶))
74, 5, 63bitr4g 313 . . . 4 (∀𝑥 𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐶))
81, 7syl 17 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐶))
98abbidv 2808 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐶})
10 df-iun 4923 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶}
11 df-iun 4923 . 2 𝑥𝐵 𝐶 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐶}
129, 10, 113eqtr4g 2804 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-iun 4923
This theorem is referenced by:  bnj1316  32700  bnj953  32819  bnj1000  32821  bnj966  32824
  Copyright terms: Public domain W3C validator