Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj956 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj956.1 | ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) |
Ref | Expression |
---|---|
bnj956 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj956.1 | . . . 4 ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) | |
2 | eleq2 2825 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 2 | anbi1d 630 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
4 | 3 | alexbii 1834 | . . . . 5 ⊢ (∀𝑥 𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
5 | df-rex 3071 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) | |
6 | df-rex 3071 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 313 | . . . 4 ⊢ (∀𝑥 𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
9 | 8 | abbidv 2805 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶}) |
10 | df-iun 4943 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iun 4943 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
12 | 9, 10, 11 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2713 ∃wrex 3070 ∪ ciun 4941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3071 df-iun 4943 |
This theorem is referenced by: bnj1316 33099 bnj953 33218 bnj1000 33220 bnj966 33223 |
Copyright terms: Public domain | W3C validator |