| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > broutsideof | Structured version Visualization version GIF version | ||
| Description: Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| broutsideof | ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-outsideof 36096 | . . 3 ⊢ OutsideOf = ( Colinear ∖ Btwn ) | |
| 2 | 1 | breqi 5129 | . 2 ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ 𝑃( Colinear ∖ Btwn )〈𝐴, 𝐵〉) |
| 3 | brdif 5176 | . 2 ⊢ (𝑃( Colinear ∖ Btwn )〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∖ cdif 3928 〈cop 4612 class class class wbr 5123 Btwn cbtwn 28835 Colinear ccolin 36013 OutsideOfcoutsideof 36095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-br 5124 df-outsideof 36096 |
| This theorem is referenced by: broutsideof2 36098 outsideofrflx 36103 outsidele 36108 outsideofcol 36109 |
| Copyright terms: Public domain | W3C validator |