Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof Structured version   Visualization version   GIF version

Theorem broutsideof 33109
 Description: Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))

Proof of Theorem broutsideof
StepHypRef Expression
1 df-outsideof 33108 . . 3 OutsideOf = ( Colinear ∖ Btwn )
21breqi 4935 . 2 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃( Colinear ∖ Btwn )⟨𝐴, 𝐵⟩)
3 brdif 4982 . 2 (𝑃( Colinear ∖ Btwn )⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
42, 3bitri 267 1 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 198   ∧ wa 387   ∖ cdif 3826  ⟨cop 4447   class class class wbr 4929   Btwn cbtwn 26378   Colinear ccolin 33025  OutsideOfcoutsideof 33107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-v 3417  df-dif 3832  df-br 4930  df-outsideof 33108 This theorem is referenced by:  broutsideof2  33110  outsideofrflx  33115  outsidele  33120  outsideofcol  33121
 Copyright terms: Public domain W3C validator