Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof Structured version   Visualization version   GIF version

Theorem broutsideof 34160
Description: Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))

Proof of Theorem broutsideof
StepHypRef Expression
1 df-outsideof 34159 . . 3 OutsideOf = ( Colinear ∖ Btwn )
21breqi 5059 . 2 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃( Colinear ∖ Btwn )⟨𝐴, 𝐵⟩)
3 brdif 5106 . 2 (𝑃( Colinear ∖ Btwn )⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
42, 3bitri 278 1 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  cdif 3863  cop 4547   class class class wbr 5053   Btwn cbtwn 26980   Colinear ccolin 34076  OutsideOfcoutsideof 34158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-br 5054  df-outsideof 34159
This theorem is referenced by:  broutsideof2  34161  outsideofrflx  34166  outsidele  34171  outsideofcol  34172
  Copyright terms: Public domain W3C validator