Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof Structured version   Visualization version   GIF version

Theorem broutsideof 35093
Description: Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐡⟩ ∧ Β¬ 𝑃 Btwn ⟨𝐴, 𝐡⟩))

Proof of Theorem broutsideof
StepHypRef Expression
1 df-outsideof 35092 . . 3 OutsideOf = ( Colinear βˆ– Btwn )
21breqi 5155 . 2 (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ 𝑃( Colinear βˆ– Btwn )⟨𝐴, 𝐡⟩)
3 brdif 5202 . 2 (𝑃( Colinear βˆ– Btwn )⟨𝐴, 𝐡⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐡⟩ ∧ Β¬ 𝑃 Btwn ⟨𝐴, 𝐡⟩))
42, 3bitri 275 1 (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐡⟩ ∧ Β¬ 𝑃 Btwn ⟨𝐴, 𝐡⟩))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 397   βˆ– cdif 3946  βŸ¨cop 4635   class class class wbr 5149   Btwn cbtwn 28147   Colinear ccolin 35009  OutsideOfcoutsideof 35091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-dif 3952  df-br 5150  df-outsideof 35092
This theorem is referenced by:  broutsideof2  35094  outsideofrflx  35099  outsidele  35104  outsideofcol  35105
  Copyright terms: Public domain W3C validator