![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > broutsideof | Structured version Visualization version GIF version |
Description: Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
broutsideof | β’ (πOutsideOfβ¨π΄, π΅β© β (π Colinear β¨π΄, π΅β© β§ Β¬ π Btwn β¨π΄, π΅β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-outsideof 35092 | . . 3 β’ OutsideOf = ( Colinear β Btwn ) | |
2 | 1 | breqi 5155 | . 2 β’ (πOutsideOfβ¨π΄, π΅β© β π( Colinear β Btwn )β¨π΄, π΅β©) |
3 | brdif 5202 | . 2 β’ (π( Colinear β Btwn )β¨π΄, π΅β© β (π Colinear β¨π΄, π΅β© β§ Β¬ π Btwn β¨π΄, π΅β©)) | |
4 | 2, 3 | bitri 275 | 1 β’ (πOutsideOfβ¨π΄, π΅β© β (π Colinear β¨π΄, π΅β© β§ Β¬ π Btwn β¨π΄, π΅β©)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 β§ wa 397 β cdif 3946 β¨cop 4635 class class class wbr 5149 Btwn cbtwn 28147 Colinear ccolin 35009 OutsideOfcoutsideof 35091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-br 5150 df-outsideof 35092 |
This theorem is referenced by: broutsideof2 35094 outsideofrflx 35099 outsidele 35104 outsideofcol 35105 |
Copyright terms: Public domain | W3C validator |