Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof Structured version   Visualization version   GIF version

Theorem broutsideof 36109
Description: Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))

Proof of Theorem broutsideof
StepHypRef Expression
1 df-outsideof 36108 . . 3 OutsideOf = ( Colinear ∖ Btwn )
21breqi 5113 . 2 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃( Colinear ∖ Btwn )⟨𝐴, 𝐵⟩)
3 brdif 5160 . 2 (𝑃( Colinear ∖ Btwn )⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
42, 3bitri 275 1 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  cdif 3911  cop 4595   class class class wbr 5107   Btwn cbtwn 28816   Colinear ccolin 36025  OutsideOfcoutsideof 36107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-br 5108  df-outsideof 36108
This theorem is referenced by:  broutsideof2  36110  outsideofrflx  36115  outsidele  36120  outsideofcol  36121
  Copyright terms: Public domain W3C validator