| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 5121 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-br 5120 |
| This theorem is referenced by: f1ompt 7101 isocnv3 7325 eqfunresadj 7353 brtpos2 8231 brwitnlem 8519 brdifun 8749 omxpenlem 9087 infxpenlem 10027 ltpiord 10901 nqerf 10944 nqerid 10947 ordpinq 10957 ltxrlt 11305 ltxr 13131 trclublem 15014 oduleg 18302 oduposb 18339 join0 18415 meet0 18416 xmeterval 24371 pi1cpbl 24995 slenlt 27716 ltgov 28576 brbtwn 28878 avril1 30444 axhcompl-zf 30979 hlimadd 31174 hhcmpl 31181 hhcms 31184 hlim0 31216 fcoinvbr 32586 brprop 32674 posrasymb 32945 trleile 32951 isarchi 33180 pstmfval 33927 pstmxmet 33928 lmlim 33978 satfbrsuc 35388 brtxp 35898 brpprod 35903 brpprod3b 35905 brtxpsd2 35913 brdomain 35951 brrange 35952 brimg 35955 brapply 35956 brsuccf 35959 brrestrict 35967 brub 35972 brlb 35973 colineardim1 36079 broutsideof 36139 fneval 36370 relowlpssretop 37382 phpreu 37628 poimirlem26 37670 br1cnvres 38287 brid 38324 eqres 38358 alrmomorn 38376 brabidgaw 38383 brabidga 38384 brxrn 38392 br1cossinres 38465 br1cossxrnres 38466 brnonrel 43613 brcofffn 44055 brco2f1o 44056 brco3f1o 44057 clsneikex 44130 clsneinex 44131 clsneiel1 44132 neicvgmex 44141 neicvgel1 44143 brpermmodel 45028 climreeq 45642 xlimres 45850 xlimcl 45851 xlimclim 45853 xlimconst 45854 xlimbr 45856 xlimmnfvlem1 45861 xlimmnfvlem2 45862 xlimpnfvlem1 45865 xlimpnfvlem2 45866 xlimuni 45882 lambert0 46919 lamberte 46920 islmd 49535 iscmd 49536 gte-lte 49588 gt-lt 49589 gte-lteh 49590 gt-lth 49591 |
| Copyright terms: Public domain | W3C validator |