| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 5112 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-br 5111 |
| This theorem is referenced by: f1ompt 7086 isocnv3 7310 eqfunresadj 7338 brtpos2 8214 brwitnlem 8474 brdifun 8704 omxpenlem 9047 infxpenlem 9973 ltpiord 10847 nqerf 10890 nqerid 10893 ordpinq 10903 ltxrlt 11251 ltxr 13082 trclublem 14968 oduleg 18258 oduposb 18295 join0 18371 meet0 18372 xmeterval 24327 pi1cpbl 24951 slenlt 27671 ltgov 28531 brbtwn 28833 avril1 30399 axhcompl-zf 30934 hlimadd 31129 hhcmpl 31136 hhcms 31139 hlim0 31171 fcoinvbr 32541 brprop 32627 posrasymb 32898 trleile 32904 isarchi 33143 pstmfval 33893 pstmxmet 33894 lmlim 33944 satfbrsuc 35360 brtxp 35875 brpprod 35880 brpprod3b 35882 brtxpsd2 35890 brdomain 35928 brrange 35929 brimg 35932 brapply 35933 brsuccf 35936 brrestrict 35944 brub 35949 brlb 35950 colineardim1 36056 broutsideof 36116 fneval 36347 relowlpssretop 37359 phpreu 37605 poimirlem26 37647 br1cnvres 38265 brid 38301 eqres 38329 alrmomorn 38347 brabidgaw 38354 brabidga 38355 brxrn 38363 br1cossinres 38445 br1cossxrnres 38446 brnonrel 43585 brcofffn 44027 brco2f1o 44028 brco3f1o 44029 clsneikex 44102 clsneinex 44103 clsneiel1 44104 neicvgmex 44113 neicvgel1 44115 brpermmodel 45000 climreeq 45618 xlimres 45826 xlimcl 45827 xlimclim 45829 xlimconst 45830 xlimbr 45832 xlimmnfvlem1 45837 xlimmnfvlem2 45838 xlimpnfvlem1 45841 xlimpnfvlem2 45842 xlimuni 45858 lambert0 46895 lamberte 46896 islmd 49658 iscmd 49659 lmdran 49664 cmdlan 49665 gte-lte 49717 gt-lt 49718 gte-lteh 49719 gt-lth 49720 |
| Copyright terms: Public domain | W3C validator |