| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 5104 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: f1ompt 7065 isocnv3 7289 eqfunresadj 7317 brtpos2 8188 brwitnlem 8448 brdifun 8678 omxpenlem 9019 infxpenlem 9944 ltpiord 10818 nqerf 10861 nqerid 10864 ordpinq 10874 ltxrlt 11222 ltxr 13053 trclublem 14938 oduleg 18232 oduposb 18269 join0 18345 meet0 18346 xmeterval 24354 pi1cpbl 24978 slenlt 27698 ltgov 28578 brbtwn 28880 avril1 30443 axhcompl-zf 30978 hlimadd 31173 hhcmpl 31180 hhcms 31183 hlim0 31215 fcoinvbr 32585 brprop 32671 posrasymb 32940 trleile 32944 isarchi 33152 pstmfval 33880 pstmxmet 33881 lmlim 33931 satfbrsuc 35347 brtxp 35862 brpprod 35867 brpprod3b 35869 brtxpsd2 35877 brdomain 35915 brrange 35916 brimg 35919 brapply 35920 brsuccf 35923 brrestrict 35931 brub 35936 brlb 35937 colineardim1 36043 broutsideof 36103 fneval 36334 relowlpssretop 37346 phpreu 37592 poimirlem26 37634 br1cnvres 38252 brid 38288 eqres 38316 alrmomorn 38334 brabidgaw 38341 brabidga 38342 brxrn 38350 br1cossinres 38432 br1cossxrnres 38433 brnonrel 43572 brcofffn 44014 brco2f1o 44015 brco3f1o 44016 clsneikex 44089 clsneinex 44090 clsneiel1 44091 neicvgmex 44100 neicvgel1 44102 brpermmodel 44987 climreeq 45605 xlimres 45813 xlimcl 45814 xlimclim 45816 xlimconst 45817 xlimbr 45819 xlimmnfvlem1 45824 xlimmnfvlem2 45825 xlimpnfvlem1 45828 xlimpnfvlem2 45829 xlimuni 45845 lambert0 46882 lamberte 46883 islmd 49648 iscmd 49649 lmdran 49654 cmdlan 49655 gte-lte 49707 gt-lt 49708 gte-lteh 49709 gt-lth 49710 |
| Copyright terms: Public domain | W3C validator |