| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 5091 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-br 5090 |
| This theorem is referenced by: f1ompt 7044 isocnv3 7266 eqfunresadj 7294 brtpos2 8162 brwitnlem 8422 brdifun 8652 omxpenlem 8991 infxpenlem 9904 ltpiord 10778 nqerf 10821 nqerid 10824 ordpinq 10834 ltxrlt 11183 ltxr 13014 trclublem 14902 oduleg 18196 oduposb 18233 join0 18309 meet0 18310 xmeterval 24347 pi1cpbl 24971 slenlt 27691 ltgov 28575 brbtwn 28877 avril1 30443 axhcompl-zf 30978 hlimadd 31173 hhcmpl 31180 hhcms 31183 hlim0 31215 fcoinvbr 32585 brprop 32678 posrasymb 32948 trleile 32952 isarchi 33151 pstmfval 33909 pstmxmet 33910 lmlim 33960 fineqvnttrclse 35144 satfbrsuc 35410 brtxp 35922 brpprod 35927 brpprod3b 35929 brtxpsd2 35937 brdomain 35975 brrange 35976 brimg 35979 brapply 35980 brsuccf 35984 brrestrict 35993 brub 35998 brlb 35999 colineardim1 36105 broutsideof 36165 fneval 36396 relowlpssretop 37408 phpreu 37643 poimirlem26 37685 br1cnvres 38305 brid 38343 eqres 38371 alrmomorn 38389 brabidgaw 38396 brabidga 38397 brxrn 38406 br1cossinres 38548 br1cossxrnres 38549 brnonrel 43681 brcofffn 44123 brco2f1o 44124 brco3f1o 44125 clsneikex 44198 clsneinex 44199 clsneiel1 44200 neicvgmex 44209 neicvgel1 44211 brpermmodel 45095 climreeq 45712 xlimres 45918 xlimcl 45919 xlimclim 45921 xlimconst 45922 xlimbr 45924 xlimmnfvlem1 45929 xlimmnfvlem2 45930 xlimpnfvlem1 45933 xlimpnfvlem2 45934 xlimuni 45950 lambert0 46986 lamberte 46987 islmd 49765 iscmd 49766 lmdran 49771 cmdlan 49772 gte-lte 49824 gt-lt 49825 gte-lteh 49826 gt-lth 49827 |
| Copyright terms: Public domain | W3C validator |