Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version |
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
breqi.1 | ⊢ 𝑅 = 𝑆 |
Ref | Expression |
---|---|
breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
2 | breq 5072 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-br 5071 |
This theorem is referenced by: f1ompt 6967 isocnv3 7183 brtpos2 8019 brwitnlem 8299 brdifun 8485 omxpenlem 8813 infxpenlem 9700 ltpiord 10574 nqerf 10617 nqerid 10620 ordpinq 10630 ltxrlt 10976 ltxr 12780 trclublem 14634 oduleg 17924 oduposb 17962 join0 18038 meet0 18039 xmeterval 23493 pi1cpbl 24113 ltgov 26862 brbtwn 27170 avril1 28728 axhcompl-zf 29261 hlimadd 29456 hhcmpl 29463 hhcms 29466 hlim0 29498 fcoinvbr 30848 brprop 30932 posrasymb 31145 trleile 31151 isarchi 31338 pstmfval 31748 pstmxmet 31749 lmlim 31799 satfbrsuc 33228 eqfunresadj 33641 slenlt 33882 brtxp 34109 brpprod 34114 brpprod3b 34116 brtxpsd2 34124 brdomain 34162 brrange 34163 brimg 34166 brapply 34167 brsuccf 34170 brrestrict 34178 brub 34183 brlb 34184 colineardim1 34290 broutsideof 34350 fneval 34468 relowlpssretop 35462 phpreu 35688 poimirlem26 35730 brid 36369 eqres 36402 alrmomorn 36417 brabidgaw 36422 brabidga 36423 brxrn 36431 br1cossinres 36492 br1cossxrnres 36493 brnonrel 41086 brcofffn 41530 brco2f1o 41531 brco3f1o 41532 clsneikex 41605 clsneinex 41606 clsneiel1 41607 neicvgmex 41616 neicvgel1 41618 climreeq 43044 xlimres 43252 xlimcl 43253 xlimclim 43255 xlimconst 43256 xlimbr 43258 xlimmnfvlem1 43263 xlimmnfvlem2 43264 xlimpnfvlem1 43267 xlimpnfvlem2 43268 xlimuni 43284 gte-lte 46312 gt-lt 46313 gte-lteh 46314 gt-lth 46315 |
Copyright terms: Public domain | W3C validator |