![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version |
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
breqi.1 | ⊢ 𝑅 = 𝑆 |
Ref | Expression |
---|---|
breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
2 | breq 5168 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-br 5167 |
This theorem is referenced by: f1ompt 7145 isocnv3 7368 eqfunresadj 7396 brtpos2 8273 brwitnlem 8563 brdifun 8793 omxpenlem 9139 infxpenlem 10082 ltpiord 10956 nqerf 10999 nqerid 11002 ordpinq 11012 ltxrlt 11360 ltxr 13178 trclublem 15044 oduleg 18360 oduposb 18399 join0 18475 meet0 18476 xmeterval 24463 pi1cpbl 25096 slenlt 27815 ltgov 28623 brbtwn 28932 avril1 30495 axhcompl-zf 31030 hlimadd 31225 hhcmpl 31232 hhcms 31235 hlim0 31267 fcoinvbr 32627 brprop 32709 posrasymb 32938 trleile 32944 isarchi 33162 pstmfval 33842 pstmxmet 33843 lmlim 33893 satfbrsuc 35334 brtxp 35844 brpprod 35849 brpprod3b 35851 brtxpsd2 35859 brdomain 35897 brrange 35898 brimg 35901 brapply 35902 brsuccf 35905 brrestrict 35913 brub 35918 brlb 35919 colineardim1 36025 broutsideof 36085 fneval 36318 relowlpssretop 37330 phpreu 37564 poimirlem26 37606 br1cnvres 38225 brid 38262 eqres 38296 alrmomorn 38314 brabidgaw 38321 brabidga 38322 brxrn 38330 br1cossinres 38403 br1cossxrnres 38404 brnonrel 43551 brcofffn 43993 brco2f1o 43994 brco3f1o 43995 clsneikex 44068 clsneinex 44069 clsneiel1 44070 neicvgmex 44079 neicvgel1 44081 climreeq 45534 xlimres 45742 xlimcl 45743 xlimclim 45745 xlimconst 45746 xlimbr 45748 xlimmnfvlem1 45753 xlimmnfvlem2 45754 xlimpnfvlem1 45757 xlimpnfvlem2 45758 xlimuni 45774 gte-lte 48816 gt-lt 48817 gte-lteh 48818 gt-lth 48819 |
Copyright terms: Public domain | W3C validator |