| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 5104 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: f1ompt 7065 isocnv3 7289 eqfunresadj 7317 brtpos2 8188 brwitnlem 8448 brdifun 8678 omxpenlem 9019 infxpenlem 9942 ltpiord 10816 nqerf 10859 nqerid 10862 ordpinq 10872 ltxrlt 11220 ltxr 13051 trclublem 14937 oduleg 18231 oduposb 18268 join0 18344 meet0 18345 xmeterval 24353 pi1cpbl 24977 slenlt 27697 ltgov 28577 brbtwn 28879 avril1 30442 axhcompl-zf 30977 hlimadd 31172 hhcmpl 31179 hhcms 31182 hlim0 31214 fcoinvbr 32584 brprop 32670 posrasymb 32939 trleile 32943 isarchi 33151 pstmfval 33879 pstmxmet 33880 lmlim 33930 satfbrsuc 35346 brtxp 35861 brpprod 35866 brpprod3b 35868 brtxpsd2 35876 brdomain 35914 brrange 35915 brimg 35918 brapply 35919 brsuccf 35922 brrestrict 35930 brub 35935 brlb 35936 colineardim1 36042 broutsideof 36102 fneval 36333 relowlpssretop 37345 phpreu 37591 poimirlem26 37633 br1cnvres 38251 brid 38287 eqres 38315 alrmomorn 38333 brabidgaw 38340 brabidga 38341 brxrn 38349 br1cossinres 38431 br1cossxrnres 38432 brnonrel 43571 brcofffn 44013 brco2f1o 44014 brco3f1o 44015 clsneikex 44088 clsneinex 44089 clsneiel1 44090 neicvgmex 44099 neicvgel1 44101 brpermmodel 44986 climreeq 45604 xlimres 45812 xlimcl 45813 xlimclim 45815 xlimconst 45816 xlimbr 45818 xlimmnfvlem1 45823 xlimmnfvlem2 45824 xlimpnfvlem1 45827 xlimpnfvlem2 45828 xlimuni 45844 lambert0 46881 lamberte 46882 islmd 49647 iscmd 49648 lmdran 49653 cmdlan 49654 gte-lte 49706 gt-lt 49707 gte-lteh 49708 gt-lth 49709 |
| Copyright terms: Public domain | W3C validator |