| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 5094 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5093 |
| This theorem is referenced by: f1ompt 7045 isocnv3 7269 eqfunresadj 7297 brtpos2 8165 brwitnlem 8425 brdifun 8655 omxpenlem 8995 infxpenlem 9907 ltpiord 10781 nqerf 10824 nqerid 10827 ordpinq 10837 ltxrlt 11186 ltxr 13017 trclublem 14902 oduleg 18196 oduposb 18233 join0 18309 meet0 18310 xmeterval 24318 pi1cpbl 24942 slenlt 27662 ltgov 28546 brbtwn 28848 avril1 30411 axhcompl-zf 30946 hlimadd 31141 hhcmpl 31148 hhcms 31151 hlim0 31183 fcoinvbr 32554 brprop 32647 posrasymb 32918 trleile 32922 isarchi 33133 pstmfval 33879 pstmxmet 33880 lmlim 33930 fineqvnttrclse 35093 satfbrsuc 35359 brtxp 35874 brpprod 35879 brpprod3b 35881 brtxpsd2 35889 brdomain 35927 brrange 35928 brimg 35931 brapply 35932 brsuccf 35935 brrestrict 35943 brub 35948 brlb 35949 colineardim1 36055 broutsideof 36115 fneval 36346 relowlpssretop 37358 phpreu 37604 poimirlem26 37646 br1cnvres 38264 brid 38300 eqres 38328 alrmomorn 38346 brabidgaw 38353 brabidga 38354 brxrn 38362 br1cossinres 38444 br1cossxrnres 38445 brnonrel 43582 brcofffn 44024 brco2f1o 44025 brco3f1o 44026 clsneikex 44099 clsneinex 44100 clsneiel1 44101 neicvgmex 44110 neicvgel1 44112 brpermmodel 44997 climreeq 45614 xlimres 45822 xlimcl 45823 xlimclim 45825 xlimconst 45826 xlimbr 45828 xlimmnfvlem1 45833 xlimmnfvlem2 45834 xlimpnfvlem1 45837 xlimpnfvlem2 45838 xlimuni 45854 lambert0 46891 lamberte 46892 islmd 49670 iscmd 49671 lmdran 49676 cmdlan 49677 gte-lte 49729 gt-lt 49730 gte-lteh 49731 gt-lth 49732 |
| Copyright terms: Public domain | W3C validator |