| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdif | Structured version Visualization version GIF version | ||
| Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
| Ref | Expression |
|---|---|
| brdif | ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3908 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5096 | . 2 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆)) | |
| 3 | df-br 5096 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5096 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 4 | notbii 320 | . . 3 ⊢ (¬ 𝐴𝑆𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆) |
| 6 | 3, 5 | anbi12i 628 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 7 | 1, 2, 6 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3895 〈cop 4583 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-br 5096 |
| This theorem is referenced by: fundif 6538 fndmdif 6984 isocnv3 7275 brdifun 8661 dflt2 13053 pltval 18244 slenlt 27711 ltgov 28595 opeldifid 32600 qtophaus 33921 dftr6 35867 dffr5 35870 fundmpss 35883 brsset 36003 dfon3 36006 brtxpsd2 36009 dffun10 36028 elfuns 36029 dfrecs2 36066 dfrdg4 36067 dfint3 36068 brub 36070 broutsideof 36237 brvdif 38371 frege124d 43918 |
| Copyright terms: Public domain | W3C validator |