![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdif | Structured version Visualization version GIF version |
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
Ref | Expression |
---|---|
brdif | ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5167 | . 2 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆)) | |
3 | df-br 5167 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 5167 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 4 | notbii 320 | . . 3 ⊢ (¬ 𝐴𝑆𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆) |
6 | 3, 5 | anbi12i 627 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
7 | 1, 2, 6 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3973 〈cop 4654 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-br 5167 |
This theorem is referenced by: fundif 6627 fndmdif 7075 isocnv3 7368 brdifun 8793 dflt2 13210 pltval 18402 slenlt 27815 ltgov 28623 opeldifid 32621 qtophaus 33782 dftr6 35713 dffr5 35716 fundmpss 35730 brsset 35853 dfon3 35856 brtxpsd2 35859 dffun10 35878 elfuns 35879 dfrecs2 35914 dfrdg4 35915 dfint3 35916 brub 35918 broutsideof 36085 brvdif 38217 frege124d 43723 |
Copyright terms: Public domain | W3C validator |