MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdif Structured version   Visualization version   GIF version

Theorem brdif 5163
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
brdif (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))

Proof of Theorem brdif
StepHypRef Expression
1 eldif 3927 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 5111 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 5111 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5111 . . . 4 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
54notbii 320 . . 3 𝐴𝑆𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
63, 5anbi12i 628 . 2 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
71, 2, 63bitr4i 303 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2109  cdif 3914  cop 4598   class class class wbr 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-br 5111
This theorem is referenced by:  fundif  6568  fndmdif  7017  isocnv3  7310  brdifun  8704  dflt2  13115  pltval  18298  slenlt  27671  ltgov  28531  opeldifid  32535  qtophaus  33833  dftr6  35745  dffr5  35748  fundmpss  35761  brsset  35884  dfon3  35887  brtxpsd2  35890  dffun10  35909  elfuns  35910  dfrecs2  35945  dfrdg4  35946  dfint3  35947  brub  35949  broutsideof  36116  brvdif  38257  frege124d  43757
  Copyright terms: Public domain W3C validator