![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdif | Structured version Visualization version GIF version |
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
Ref | Expression |
---|---|
brdif | ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∖ 𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆)) | |
2 | df-br 5150 | . 2 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 ∖ 𝑆)) | |
3 | df-br 5150 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
4 | df-br 5150 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆) | |
5 | 4 | notbii 319 | . . 3 ⊢ (¬ 𝐴𝑆𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆) |
6 | 3, 5 | anbi12i 625 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆)) |
7 | 1, 2, 6 | 3bitr4i 302 | 1 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ∖ cdif 3946 ⟨cop 4635 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3952 df-br 5150 |
This theorem is referenced by: fundif 6598 fndmdif 7044 isocnv3 7333 brdifun 8736 dflt2 13133 pltval 18291 slenlt 27489 ltgov 28113 opeldifid 32095 qtophaus 33112 dftr6 35023 dffr5 35026 fundmpss 35040 brsset 35163 dfon3 35166 brtxpsd2 35169 dffun10 35188 elfuns 35189 dfrecs2 35224 dfrdg4 35225 dfint3 35226 brub 35228 broutsideof 35395 brvdif 37434 frege124d 42816 |
Copyright terms: Public domain | W3C validator |