| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdif | Structured version Visualization version GIF version | ||
| Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
| Ref | Expression |
|---|---|
| brdif | ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5120 | . 2 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆)) | |
| 3 | df-br 5120 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5120 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 4 | notbii 320 | . . 3 ⊢ (¬ 𝐴𝑆𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆) |
| 6 | 3, 5 | anbi12i 628 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 7 | 1, 2, 6 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3923 〈cop 4607 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-br 5120 |
| This theorem is referenced by: fundif 6584 fndmdif 7031 isocnv3 7324 brdifun 8747 dflt2 13162 pltval 18340 slenlt 27714 ltgov 28522 opeldifid 32526 qtophaus 33813 dftr6 35714 dffr5 35717 fundmpss 35730 brsset 35853 dfon3 35856 brtxpsd2 35859 dffun10 35878 elfuns 35879 dfrecs2 35914 dfrdg4 35915 dfint3 35916 brub 35918 broutsideof 36085 brvdif 38225 frege124d 43732 |
| Copyright terms: Public domain | W3C validator |