Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof2 Structured version   Visualization version   GIF version

Theorem broutsideof2 34424
Description: Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))

Proof of Theorem broutsideof2
StepHypRef Expression
1 broutsideof 34423 . 2 (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
2 btwntriv1 34318 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Btwn ⟨𝐴, 𝐵⟩)
323adant3r1 1181 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 Btwn ⟨𝐴, 𝐵⟩)
4 breq1 5077 . . . . . . . 8 (𝐴 = 𝑃 → (𝐴 Btwn ⟨𝐴, 𝐵⟩ ↔ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
53, 4syl5ibcom 244 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 = 𝑃𝑃 Btwn ⟨𝐴, 𝐵⟩))
65necon3bd 2957 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → 𝐴𝑃))
76imp 407 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩) → 𝐴𝑃)
87adantrl 713 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴𝑃)
9 btwntriv2 34314 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 Btwn ⟨𝐴, 𝐵⟩)
1093adant3r1 1181 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 Btwn ⟨𝐴, 𝐵⟩)
11 breq1 5077 . . . . . . . 8 (𝐵 = 𝑃 → (𝐵 Btwn ⟨𝐴, 𝐵⟩ ↔ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
1210, 11syl5ibcom 244 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 = 𝑃𝑃 Btwn ⟨𝐴, 𝐵⟩))
1312necon3bd 2957 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → 𝐵𝑃))
1413imp 407 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩) → 𝐵𝑃)
1514adantrl 713 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝐵𝑃)
16 brcolinear 34361 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃 Colinear ⟨𝐴, 𝐵⟩ ↔ (𝑃 Btwn ⟨𝐴, 𝐵⟩ ∨ 𝐴 Btwn ⟨𝐵, 𝑃⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
17 pm2.24 124 . . . . . . . 8 (𝑃 Btwn ⟨𝐴, 𝐵⟩ → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
1817a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝐴, 𝐵⟩ → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
19 3anrot 1099 . . . . . . . . . 10 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)))
20 btwncom 34316 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝑃⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
2119, 20sylan2b 594 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝑃⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
22 orc 864 . . . . . . . . 9 (𝐴 Btwn ⟨𝑃, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
2321, 22syl6bi 252 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝑃⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
2423a1dd 50 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝑃⟩ → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
25 olc 865 . . . . . . . . 9 (𝐵 Btwn ⟨𝑃, 𝐴⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
2625a1d 25 . . . . . . . 8 (𝐵 Btwn ⟨𝑃, 𝐴⟩ → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
2726a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
2818, 24, 273jaod 1427 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑃 Btwn ⟨𝐴, 𝐵⟩ ∨ 𝐴 Btwn ⟨𝐵, 𝑃⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
2916, 28sylbid 239 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃 Colinear ⟨𝐴, 𝐵⟩ → (¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
3029imp32 419 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
318, 15, 303jca 1127 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
32 simp3 1137 . . . . . 6 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
33 3ancomb 1098 . . . . . . . 8 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
34 btwncolinear2 34372 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → 𝑃 Colinear ⟨𝐴, 𝐵⟩))
3533, 34sylan2b 594 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → 𝑃 Colinear ⟨𝐴, 𝐵⟩))
36 btwncolinear1 34371 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → 𝑃 Colinear ⟨𝐴, 𝐵⟩))
3735, 36jaod 856 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → 𝑃 Colinear ⟨𝐴, 𝐵⟩))
3832, 37syl5 34 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Colinear ⟨𝐴, 𝐵⟩))
3938imp 407 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))) → 𝑃 Colinear ⟨𝐴, 𝐵⟩)
40 simpr2 1194 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃)) → 𝐴𝑃)
4140neneqd 2948 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃)) → ¬ 𝐴 = 𝑃)
42 simprl1 1217 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
43 simprr 770 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝑃 Btwn ⟨𝐴, 𝐵⟩)
44 simpl 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
45 simpr2 1194 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
46 simpr1 1193 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
47 simpr3 1195 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
48 btwnswapid 34319 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩) → 𝐴 = 𝑃))
4944, 45, 46, 47, 48syl13anc 1371 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩) → 𝐴 = 𝑃))
5049adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩) → 𝐴 = 𝑃))
5142, 43, 50mp2and 696 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 = 𝑃)
5251expr 457 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃)) → (𝑃 Btwn ⟨𝐴, 𝐵⟩ → 𝐴 = 𝑃))
5341, 52mtod 197 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐴𝑃𝐵𝑃)) → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)
54533exp2 1353 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → (𝐴𝑃 → (𝐵𝑃 → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))))
55 simpr3 1195 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃)) → 𝐵𝑃)
5655neneqd 2948 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃)) → ¬ 𝐵 = 𝑃)
57 simprl1 1217 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
58 simprr 770 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝑃 Btwn ⟨𝐴, 𝐵⟩)
5944, 46, 45, 47, 58btwncomand 34317 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐴⟩)
60 3anrot 1099 . . . . . . . . . . . . . 14 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
61 btwnswapid 34319 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐴⟩) → 𝐵 = 𝑃))
6260, 61sylan2br 595 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐴⟩) → 𝐵 = 𝑃))
6362adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐴⟩) → 𝐵 = 𝑃))
6457, 59, 63mp2and 696 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐵⟩)) → 𝐵 = 𝑃)
6564expr 457 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃)) → (𝑃 Btwn ⟨𝐴, 𝐵⟩ → 𝐵 = 𝑃))
6656, 65mtod 197 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐴𝑃𝐵𝑃)) → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)
67663exp2 1353 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → (𝐴𝑃 → (𝐵𝑃 → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))))
6854, 67jaod 856 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → (𝐴𝑃 → (𝐵𝑃 → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))))
6968com12 32 . . . . . 6 ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴𝑃 → (𝐵𝑃 → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))))
7069com4l 92 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴𝑃 → (𝐵𝑃 → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))))
71703imp2 1348 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))) → ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩)
7239, 71jca 512 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))) → (𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩))
7331, 72impbida 798 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑃 Colinear ⟨𝐴, 𝐵⟩ ∧ ¬ 𝑃 Btwn ⟨𝐴, 𝐵⟩) ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
741, 73syl5bb 283 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cop 4567   class class class wbr 5074  cfv 6433  cn 11973  𝔼cee 27256   Btwn cbtwn 27257   Colinear ccolin 34339  OutsideOfcoutsideof 34421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-ee 27259  df-btwn 27260  df-cgr 27261  df-colinear 34341  df-outsideof 34422
This theorem is referenced by:  outsidene1  34425  outsidene2  34426  btwnoutside  34427  broutsideof3  34428  outsideofcom  34430  outsideoftr  34431  outsideofeq  34432  outsideofeu  34433  lineunray  34449
  Copyright terms: Public domain W3C validator