Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Visualization version   GIF version

Theorem outsidele 36127
Description: Relate OutsideOf to Seg. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))

Proof of Theorem outsidele
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simpr1 1195 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
3 simpr2 1196 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
4 simpr3 1197 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
5 brsegle2 36104 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
61, 2, 3, 2, 4, 5syl122anc 1381 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
76adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
8 simprl 770 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐴, 𝐵⟩)
9 outsideofcom 36123 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
109ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
118, 10mpbid 232 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐵, 𝐴⟩)
12 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simplr1 1216 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
14 simplr3 1218 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
1512, 13, 14cgrrflxd 35983 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1615adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1711, 16jca 511 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩))
18 simprrl 780 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
19 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
20 simplr2 1217 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
21 btwncolinear1 36064 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2212, 13, 19, 20, 21syl13anc 1374 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2322adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2418, 23mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃 Colinear ⟨𝑦, 𝐴⟩)
25 outsidene1 36118 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
2625ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
278, 26mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴𝑃)
2827neneqd 2931 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝐴 = 𝑃)
29 df-3an 1088 . . . . . . . . . . . . 13 ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) ↔ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
30 simpr2l 1233 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
3112, 20, 13, 19, 30btwncomand 36010 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑦, 𝑃⟩)
32 simpr3 1197 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝑃 Btwn ⟨𝑦, 𝐴⟩)
33 btwnswapid2 36013 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3412, 20, 19, 13, 33syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3534adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3631, 32, 35mp2and 699 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3729, 36sylan2br 595 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3837expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃 Btwn ⟨𝑦, 𝐴⟩ → 𝐴 = 𝑃))
3928, 38mtod 198 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩)
40 broutsideof 36116 . . . . . . . . . 10 (𝑃OutsideOf⟨𝑦, 𝐴⟩ ↔ (𝑃 Colinear ⟨𝑦, 𝐴⟩ ∧ ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
4124, 39, 40sylanbrc 583 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝑦, 𝐴⟩)
42 simprrr 781 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)
4341, 42jca 511 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))
44 outsideofeq 36125 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1395 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4645adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4717, 43, 46mp2and 699 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐵 = 𝑦)
48 opeq2 4841 . . . . . . . . 9 (𝐵 = 𝑦 → ⟨𝑃, 𝐵⟩ = ⟨𝑃, 𝑦⟩)
4948breq2d 5122 . . . . . . . 8 (𝐵 = 𝑦 → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝑦⟩))
5018, 49syl5ibrcom 247 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐵 = 𝑦𝐴 Btwn ⟨𝑃, 𝐵⟩))
5147, 50mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5251an4s 660 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5352rexlimdvaa 3136 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
547, 53sylbid 240 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
55 btwnsegle 36112 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5655adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5754, 56impbid 212 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
5857ex 412 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cop 4598   class class class wbr 5110  cfv 6514  cn 12193  𝔼cee 28822   Btwn cbtwn 28823  Cgrccgr 28824   Colinear ccolin 36032   Seg csegle 36101  OutsideOfcoutsideof 36114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-ee 28825  df-btwn 28826  df-cgr 28827  df-ofs 35978  df-colinear 36034  df-ifs 36035  df-cgr3 36036  df-fs 36037  df-segle 36102  df-outsideof 36115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator