Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Visualization version   GIF version

Theorem outsidele 36120
Description: Relate OutsideOf to Seg. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))

Proof of Theorem outsidele
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simpr1 1195 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
3 simpr2 1196 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
4 simpr3 1197 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
5 brsegle2 36097 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
61, 2, 3, 2, 4, 5syl122anc 1381 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
76adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
8 simprl 770 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐴, 𝐵⟩)
9 outsideofcom 36116 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
109ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
118, 10mpbid 232 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐵, 𝐴⟩)
12 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simplr1 1216 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
14 simplr3 1218 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
1512, 13, 14cgrrflxd 35976 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1615adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1711, 16jca 511 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩))
18 simprrl 780 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
19 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
20 simplr2 1217 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
21 btwncolinear1 36057 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2212, 13, 19, 20, 21syl13anc 1374 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2322adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2418, 23mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃 Colinear ⟨𝑦, 𝐴⟩)
25 outsidene1 36111 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
2625ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
278, 26mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴𝑃)
2827neneqd 2930 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝐴 = 𝑃)
29 df-3an 1088 . . . . . . . . . . . . 13 ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) ↔ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
30 simpr2l 1233 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
3112, 20, 13, 19, 30btwncomand 36003 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑦, 𝑃⟩)
32 simpr3 1197 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝑃 Btwn ⟨𝑦, 𝐴⟩)
33 btwnswapid2 36006 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3412, 20, 19, 13, 33syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3534adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3631, 32, 35mp2and 699 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3729, 36sylan2br 595 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3837expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃 Btwn ⟨𝑦, 𝐴⟩ → 𝐴 = 𝑃))
3928, 38mtod 198 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩)
40 broutsideof 36109 . . . . . . . . . 10 (𝑃OutsideOf⟨𝑦, 𝐴⟩ ↔ (𝑃 Colinear ⟨𝑦, 𝐴⟩ ∧ ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
4124, 39, 40sylanbrc 583 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝑦, 𝐴⟩)
42 simprrr 781 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)
4341, 42jca 511 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))
44 outsideofeq 36118 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1395 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4645adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4717, 43, 46mp2and 699 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐵 = 𝑦)
48 opeq2 4838 . . . . . . . . 9 (𝐵 = 𝑦 → ⟨𝑃, 𝐵⟩ = ⟨𝑃, 𝑦⟩)
4948breq2d 5119 . . . . . . . 8 (𝐵 = 𝑦 → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝑦⟩))
5018, 49syl5ibrcom 247 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐵 = 𝑦𝐴 Btwn ⟨𝑃, 𝐵⟩))
5147, 50mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5251an4s 660 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5352rexlimdvaa 3135 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
547, 53sylbid 240 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
55 btwnsegle 36105 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5655adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5754, 56impbid 212 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
5857ex 412 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cop 4595   class class class wbr 5107  cfv 6511  cn 12186  𝔼cee 28815   Btwn cbtwn 28816  Cgrccgr 28817   Colinear ccolin 36025   Seg csegle 36094  OutsideOfcoutsideof 36107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-ee 28818  df-btwn 28819  df-cgr 28820  df-ofs 35971  df-colinear 36027  df-ifs 36028  df-cgr3 36029  df-fs 36030  df-segle 36095  df-outsideof 36108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator