Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Visualization version   GIF version

Theorem outsidele 32778
Description: Relate OutsideOf to Seg. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))

Proof of Theorem outsidele
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simpr1 1254 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
3 simpr2 1256 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
4 simpr3 1258 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
5 brsegle2 32755 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
61, 2, 3, 2, 4, 5syl122anc 1504 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
76adantr 474 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
8 simprl 789 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐴, 𝐵⟩)
9 outsideofcom 32774 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
109ad2antrr 719 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
118, 10mpbid 224 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐵, 𝐴⟩)
12 simpll 785 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simplr1 1281 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
14 simplr3 1285 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
1512, 13, 14cgrrflxd 32634 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1615adantr 474 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1711, 16jca 509 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩))
18 simprrl 801 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
19 simpr 479 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
20 simplr2 1283 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
21 btwncolinear1 32715 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2212, 13, 19, 20, 21syl13anc 1497 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2322adantr 474 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2418, 23mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃 Colinear ⟨𝑦, 𝐴⟩)
25 outsidene1 32769 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
2625ad2antrr 719 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
278, 26mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴𝑃)
2827neneqd 3004 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝐴 = 𝑃)
29 df-3an 1115 . . . . . . . . . . . . 13 ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) ↔ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
30 simpr2l 1315 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
3112, 20, 13, 19, 30btwncomand 32661 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑦, 𝑃⟩)
32 simpr3 1258 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝑃 Btwn ⟨𝑦, 𝐴⟩)
33 btwnswapid2 32664 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3412, 20, 19, 13, 33syl13anc 1497 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3534adantr 474 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3631, 32, 35mp2and 692 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3729, 36sylan2br 590 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3837expr 450 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃 Btwn ⟨𝑦, 𝐴⟩ → 𝐴 = 𝑃))
3928, 38mtod 190 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩)
40 broutsideof 32767 . . . . . . . . . 10 (𝑃OutsideOf⟨𝑦, 𝐴⟩ ↔ (𝑃 Colinear ⟨𝑦, 𝐴⟩ ∧ ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
4124, 39, 40sylanbrc 580 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝑦, 𝐴⟩)
42 simprrr 802 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)
4341, 42jca 509 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))
44 outsideofeq 32776 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1518 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4645adantr 474 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4717, 43, 46mp2and 692 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐵 = 𝑦)
48 opeq2 4624 . . . . . . . . 9 (𝐵 = 𝑦 → ⟨𝑃, 𝐵⟩ = ⟨𝑃, 𝑦⟩)
4948breq2d 4885 . . . . . . . 8 (𝐵 = 𝑦 → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝑦⟩))
5018, 49syl5ibrcom 239 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐵 = 𝑦𝐴 Btwn ⟨𝑃, 𝐵⟩))
5147, 50mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5251an4s 652 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5352rexlimdvaa 3241 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
547, 53sylbid 232 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
55 btwnsegle 32763 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5655adantr 474 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5754, 56impbid 204 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
5857ex 403 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wrex 3118  cop 4403   class class class wbr 4873  cfv 6123  cn 11350  𝔼cee 26187   Btwn cbtwn 26188  Cgrccgr 26189   Colinear ccolin 32683   Seg csegle 32752  OutsideOfcoutsideof 32765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-ee 26190  df-btwn 26191  df-cgr 26192  df-ofs 32629  df-colinear 32685  df-ifs 32686  df-cgr3 32687  df-fs 32688  df-segle 32753  df-outsideof 32766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator