Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Visualization version   GIF version

Theorem outsidele 35092
Description: Relate OutsideOf to Seg≀. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ ↔ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)))

Proof of Theorem outsidele
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
2 simpr1 1194 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
3 simpr2 1195 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
4 simpr3 1196 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
5 brsegle2 35069 . . . . . 6 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)) ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ ↔ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)))
61, 2, 3, 2, 4, 5syl122anc 1379 . . . . 5 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ ↔ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)))
76adantr 481 . . . 4 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑃OutsideOf⟨𝐴, 𝐡⟩) β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ ↔ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)))
8 simprl 769 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝑃OutsideOf⟨𝐴, 𝐡⟩)
9 outsideofcom 35088 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ 𝑃OutsideOf⟨𝐡, 𝐴⟩))
109ad2antrr 724 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ 𝑃OutsideOf⟨𝐡, 𝐴⟩))
118, 10mpbid 231 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝑃OutsideOf⟨𝐡, 𝐴⟩)
12 simpll 765 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ 𝑁 ∈ β„•)
13 simplr1 1215 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
14 simplr3 1217 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
1512, 13, 14cgrrflxd 34948 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ βŸ¨π‘ƒ, 𝐡⟩CgrβŸ¨π‘ƒ, 𝐡⟩)
1615adantr 481 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ βŸ¨π‘ƒ, 𝐡⟩CgrβŸ¨π‘ƒ, 𝐡⟩)
1711, 16jca 512 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝑃OutsideOf⟨𝐡, 𝐴⟩ ∧ βŸ¨π‘ƒ, 𝐡⟩CgrβŸ¨π‘ƒ, 𝐡⟩))
18 simprrl 779 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ©)
19 simpr 485 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
20 simplr2 1216 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
21 btwncolinear1 35029 . . . . . . . . . . . . 13 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© β†’ 𝑃 Colinear βŸ¨π‘¦, 𝐴⟩))
2212, 13, 19, 20, 21syl13anc 1372 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© β†’ 𝑃 Colinear βŸ¨π‘¦, 𝐴⟩))
2322adantr 481 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© β†’ 𝑃 Colinear βŸ¨π‘¦, 𝐴⟩))
2418, 23mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝑃 Colinear βŸ¨π‘¦, 𝐴⟩)
25 outsidene1 35083 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ β†’ 𝐴 β‰  𝑃))
2625ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ β†’ 𝐴 β‰  𝑃))
278, 26mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝐴 β‰  𝑃)
2827neneqd 2945 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ Β¬ 𝐴 = 𝑃)
29 df-3an 1089 . . . . . . . . . . . . 13 ((𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩) ↔ ((𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩))
30 simpr2l 1232 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)) β†’ 𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ©)
3112, 20, 13, 19, 30btwncomand 34975 . . . . . . . . . . . . . 14 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)) β†’ 𝐴 Btwn βŸ¨π‘¦, π‘ƒβŸ©)
32 simpr3 1196 . . . . . . . . . . . . . 14 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)) β†’ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)
33 btwnswapid2 34978 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 Btwn βŸ¨π‘¦, π‘ƒβŸ© ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩) β†’ 𝐴 = 𝑃))
3412, 20, 19, 13, 33syl13anc 1372 . . . . . . . . . . . . . . 15 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ ((𝐴 Btwn βŸ¨π‘¦, π‘ƒβŸ© ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩) β†’ 𝐴 = 𝑃))
3534adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)) β†’ ((𝐴 Btwn βŸ¨π‘¦, π‘ƒβŸ© ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩) β†’ 𝐴 = 𝑃))
3631, 32, 35mp2and 697 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)) β†’ 𝐴 = 𝑃)
3729, 36sylan2br 595 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ ((𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)) ∧ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)) β†’ 𝐴 = 𝑃)
3837expr 457 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝑃 Btwn βŸ¨π‘¦, 𝐴⟩ β†’ 𝐴 = 𝑃))
3928, 38mtod 197 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ Β¬ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩)
40 broutsideof 35081 . . . . . . . . . 10 (𝑃OutsideOfβŸ¨π‘¦, 𝐴⟩ ↔ (𝑃 Colinear βŸ¨π‘¦, 𝐴⟩ ∧ Β¬ 𝑃 Btwn βŸ¨π‘¦, 𝐴⟩))
4124, 39, 40sylanbrc 583 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝑃OutsideOfβŸ¨π‘¦, 𝐴⟩)
42 simprrr 780 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)
4341, 42jca 512 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝑃OutsideOfβŸ¨π‘¦, 𝐴⟩ ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))
44 outsideofeq 35090 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘)) ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘))) β†’ (((𝑃OutsideOf⟨𝐡, 𝐴⟩ ∧ βŸ¨π‘ƒ, 𝐡⟩CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ (𝑃OutsideOfβŸ¨π‘¦, 𝐴⟩ ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝐡 = 𝑦))
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1393 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) β†’ (((𝑃OutsideOf⟨𝐡, 𝐴⟩ ∧ βŸ¨π‘ƒ, 𝐡⟩CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ (𝑃OutsideOfβŸ¨π‘¦, 𝐴⟩ ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝐡 = 𝑦))
4645adantr 481 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (((𝑃OutsideOf⟨𝐡, 𝐴⟩ ∧ βŸ¨π‘ƒ, 𝐡⟩CgrβŸ¨π‘ƒ, 𝐡⟩) ∧ (𝑃OutsideOfβŸ¨π‘¦, 𝐴⟩ ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝐡 = 𝑦))
4717, 43, 46mp2and 697 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝐡 = 𝑦)
48 opeq2 4873 . . . . . . . . 9 (𝐡 = 𝑦 β†’ βŸ¨π‘ƒ, 𝐡⟩ = βŸ¨π‘ƒ, π‘¦βŸ©)
4948breq2d 5159 . . . . . . . 8 (𝐡 = 𝑦 β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ↔ 𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ©))
5018, 49syl5ibrcom 246 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ (𝐡 = 𝑦 β†’ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩))
5147, 50mpd 15 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑦 ∈ (π”Όβ€˜π‘)) ∧ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)
5251an4s 658 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑃OutsideOf⟨𝐴, 𝐡⟩) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ (𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩))) β†’ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)
5352rexlimdvaa 3156 . . . 4 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑃OutsideOf⟨𝐴, 𝐡⟩) β†’ (βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝐴 Btwn βŸ¨π‘ƒ, π‘¦βŸ© ∧ βŸ¨π‘ƒ, π‘¦βŸ©CgrβŸ¨π‘ƒ, 𝐡⟩) β†’ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩))
547, 53sylbid 239 . . 3 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑃OutsideOf⟨𝐴, 𝐡⟩) β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ β†’ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩))
55 btwnsegle 35077 . . . 4 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ β†’ βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩))
5655adantr 481 . . 3 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑃OutsideOf⟨𝐴, 𝐡⟩) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ β†’ βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩))
5754, 56impbid 211 . 2 (((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) ∧ 𝑃OutsideOf⟨𝐴, 𝐡⟩) β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ ↔ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩))
5857ex 413 1 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ β†’ (βŸ¨π‘ƒ, 𝐴⟩ Seg≀ βŸ¨π‘ƒ, 𝐡⟩ ↔ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6540  β„•cn 12208  π”Όcee 28135   Btwn cbtwn 28136  Cgrccgr 28137   Colinear ccolin 34997   Seg≀ csegle 35066  OutsideOfcoutsideof 35079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ee 28138  df-btwn 28139  df-cgr 28140  df-ofs 34943  df-colinear 34999  df-ifs 35000  df-cgr3 35001  df-fs 35002  df-segle 35067  df-outsideof 35080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator