Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Visualization version   GIF version

Theorem outsidele 36150
Description: Relate OutsideOf to Seg. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))

Proof of Theorem outsidele
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simpr1 1195 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
3 simpr2 1196 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
4 simpr3 1197 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
5 brsegle2 36127 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
61, 2, 3, 2, 4, 5syl122anc 1381 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
76adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)))
8 simprl 770 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐴, 𝐵⟩)
9 outsideofcom 36146 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
109ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ 𝑃OutsideOf⟨𝐵, 𝐴⟩))
118, 10mpbid 232 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝐵, 𝐴⟩)
12 simpll 766 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simplr1 1216 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
14 simplr3 1218 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
1512, 13, 14cgrrflxd 36006 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1615adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩)
1711, 16jca 511 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩))
18 simprrl 780 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
19 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
20 simplr2 1217 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
21 btwncolinear1 36087 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2212, 13, 19, 20, 21syl13anc 1374 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2322adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐴 Btwn ⟨𝑃, 𝑦⟩ → 𝑃 Colinear ⟨𝑦, 𝐴⟩))
2418, 23mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃 Colinear ⟨𝑦, 𝐴⟩)
25 outsidene1 36141 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
2625ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → 𝐴𝑃))
278, 26mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴𝑃)
2827neneqd 2937 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝐴 = 𝑃)
29 df-3an 1088 . . . . . . . . . . . . 13 ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) ↔ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
30 simpr2l 1233 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑃, 𝑦⟩)
3112, 20, 13, 19, 30btwncomand 36033 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 Btwn ⟨𝑦, 𝑃⟩)
32 simpr3 1197 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝑃 Btwn ⟨𝑦, 𝐴⟩)
33 btwnswapid2 36036 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3412, 20, 19, 13, 33syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3534adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → ((𝐴 Btwn ⟨𝑦, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩) → 𝐴 = 𝑃))
3631, 32, 35mp2and 699 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3729, 36sylan2br 595 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) ∧ 𝑃 Btwn ⟨𝑦, 𝐴⟩)) → 𝐴 = 𝑃)
3837expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃 Btwn ⟨𝑦, 𝐴⟩ → 𝐴 = 𝑃))
3928, 38mtod 198 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩)
40 broutsideof 36139 . . . . . . . . . 10 (𝑃OutsideOf⟨𝑦, 𝐴⟩ ↔ (𝑃 Colinear ⟨𝑦, 𝐴⟩ ∧ ¬ 𝑃 Btwn ⟨𝑦, 𝐴⟩))
4124, 39, 40sylanbrc 583 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝑃OutsideOf⟨𝑦, 𝐴⟩)
42 simprrr 781 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)
4341, 42jca 511 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))
44 outsideofeq 36148 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1395 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4645adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (((𝑃OutsideOf⟨𝐵, 𝐴⟩ ∧ ⟨𝑃, 𝐵⟩Cgr⟨𝑃, 𝐵⟩) ∧ (𝑃OutsideOf⟨𝑦, 𝐴⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩)) → 𝐵 = 𝑦))
4717, 43, 46mp2and 699 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐵 = 𝑦)
48 opeq2 4850 . . . . . . . . 9 (𝐵 = 𝑦 → ⟨𝑃, 𝐵⟩ = ⟨𝑃, 𝑦⟩)
4948breq2d 5131 . . . . . . . 8 (𝐵 = 𝑦 → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝑦⟩))
5018, 49syl5ibrcom 247 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → (𝐵 = 𝑦𝐴 Btwn ⟨𝑃, 𝐵⟩))
5147, 50mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5251an4s 660 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ (𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩))) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
5352rexlimdvaa 3142 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (∃𝑦 ∈ (𝔼‘𝑁)(𝐴 Btwn ⟨𝑃, 𝑦⟩ ∧ ⟨𝑃, 𝑦⟩Cgr⟨𝑃, 𝐵⟩) → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
547, 53sylbid 240 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ → 𝐴 Btwn ⟨𝑃, 𝐵⟩))
55 btwnsegle 36135 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5655adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩))
5754, 56impbid 212 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑃OutsideOf⟨𝐴, 𝐵⟩) → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
5857ex 412 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ → (⟨𝑃, 𝐴⟩ Seg𝑃, 𝐵⟩ ↔ 𝐴 Btwn ⟨𝑃, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cop 4607   class class class wbr 5119  cfv 6531  cn 12240  𝔼cee 28867   Btwn cbtwn 28868  Cgrccgr 28869   Colinear ccolin 36055   Seg csegle 36124  OutsideOfcoutsideof 36137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-ee 28870  df-btwn 28871  df-cgr 28872  df-ofs 36001  df-colinear 36057  df-ifs 36058  df-cgr3 36059  df-fs 36060  df-segle 36125  df-outsideof 36138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator