![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbviunvw2 | Structured version Visualization version GIF version |
Description: Change bound variable and domain in indexed unions, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbviunvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
cbviunvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbviunvw2 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviunvw2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | cbviunvw2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
3 | 2 | eleq2d 2830 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷)) |
4 | 1, 3 | cbvrexvw2 36185 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑡 ∈ 𝐷) |
5 | 4 | abbii 2812 | . 2 ⊢ {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∃𝑦 ∈ 𝐵 𝑡 ∈ 𝐷} |
6 | df-iun 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
7 | df-iun 5017 | . 2 ⊢ ∪ 𝑦 ∈ 𝐵 𝐷 = {𝑡 ∣ ∃𝑦 ∈ 𝐵 𝑡 ∈ 𝐷} | |
8 | 5, 6, 7 | 3eqtr4i 2778 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐵 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-iun 5017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |