| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvcsbv | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvcsbv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvcsbv | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvsbcvw 3771 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2800 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐶} |
| 5 | df-csb 3847 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
| 6 | df-csb 3847 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2766 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 [wsbc 3737 ⦋csb 3846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 df-csb 3847 |
| This theorem is referenced by: cbvsumv 15605 cbvprodv 15823 pmatcollpw3lem 22699 precsexlemcbv 28145 cbvprodvw2 36312 poimirlem27 37707 cdleme40v 40588 |
| Copyright terms: Public domain | W3C validator |