![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvcsbv | Structured version Visualization version GIF version |
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
cbvcsbv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvcsbv | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2941 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2941 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvcsbv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvcsb 3733 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ⦋csb 3728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-sbc 3634 df-csb 3729 |
This theorem is referenced by: pmatcollpw3lem 20916 poimirlem27 33925 cdleme40v 36490 |
Copyright terms: Public domain | W3C validator |