| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvcsbv | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvcsbv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvcsbv | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2817 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvsbcvw 3775 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2798 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐶} |
| 5 | df-csb 3851 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
| 6 | df-csb 3851 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2764 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 df-csb 3851 |
| This theorem is referenced by: cbvsumv 15600 cbvprodv 15818 pmatcollpw3lem 22696 precsexlemcbv 28142 cbvprodvw2 36280 poimirlem27 37686 cdleme40v 40507 |
| Copyright terms: Public domain | W3C validator |