Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvcsbv | Structured version Visualization version GIF version |
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
cbvcsbv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvcsbv | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvcsbv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvcsbw 3842 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: pmatcollpw3lem 21932 poimirlem27 35804 cdleme40v 38483 |
Copyright terms: Public domain | W3C validator |