MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvcsbv Structured version   Visualization version   GIF version

Theorem cbvcsbv 3900
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvcsbv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvcsbv 𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvcsbv
StepHypRef Expression
1 nfcv 2897 . 2 𝑦𝐵
2 nfcv 2897 . 2 𝑥𝐶
3 cbvcsbv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvcsbw 3898 1 𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  csb 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-sbc 3773  df-csb 3889
This theorem is referenced by:  pmatcollpw3lem  22635  precsexlemcbv  28054  poimirlem27  37027  cdleme40v  39852
  Copyright terms: Public domain W3C validator