Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvcsbv Structured version   Visualization version   GIF version

Theorem cbvcsbv 3734
 Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvcsbv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvcsbv 𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvcsbv
StepHypRef Expression
1 nfcv 2941 . 2 𝑦𝐵
2 nfcv 2941 . 2 𝑥𝐶
3 cbvcsbv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvcsb 3733 1 𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1653  ⦋csb 3728 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-sbc 3634  df-csb 3729 This theorem is referenced by:  pmatcollpw3lem  20916  poimirlem27  33925  cdleme40v  36490
 Copyright terms: Public domain W3C validator