Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbviindavw Structured version   Visualization version   GIF version

Theorem cbviindavw 36202
Description: Change bound variable in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbviindavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbviindavw (𝜑 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbviindavw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbviindavw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
21eleq2d 2819 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑡𝐵𝑡𝐶))
32cbvraldva 3220 . . 3 (𝜑 → (∀𝑥𝐴 𝑡𝐵 ↔ ∀𝑦𝐴 𝑡𝐶))
43abbidv 2800 . 2 (𝜑 → {𝑡 ∣ ∀𝑥𝐴 𝑡𝐵} = {𝑡 ∣ ∀𝑦𝐴 𝑡𝐶})
5 df-iin 4967 . 2 𝑥𝐴 𝐵 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐵}
6 df-iin 4967 . 2 𝑦𝐴 𝐶 = {𝑡 ∣ ∀𝑦𝐴 𝑡𝐶}
74, 5, 63eqtr4g 2794 1 (𝜑 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wral 3050   ciin 4965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-iin 4967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator