MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvraldva Structured version   Visualization version   GIF version

Theorem cbvraldva 3383
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvraldva (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvraldva
StepHypRef Expression
1 cbvraldva.1 . 2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
2 eqidd 2739 . 2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐴)
31, 2cbvraldva2 3381 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817  df-ral 3068
This theorem is referenced by:  wrd2ind  14364  axtgcont  26734
  Copyright terms: Public domain W3C validator