| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvraldva | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2119, ax-ext 2702. (Revised by Wolf Lammen, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| cbvraldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvraldva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvraldva.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ancoms 458 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | pm5.74da 803 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 4 | 3 | cbvralvw 3216 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
| 5 | r19.21v 3159 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
| 6 | r19.21v 3159 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦 ∈ 𝐴 𝜒)) | |
| 7 | 4, 5, 6 | 3bitr3i 301 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∀𝑦 ∈ 𝐴 𝜒)) |
| 8 | 7 | pm5.74ri 272 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 df-ral 3046 |
| This theorem is referenced by: cbvrexdva 3219 wrd2ind 14695 axtgcont 28403 cbviindavw 36258 cbvixpdavw 36273 weiunfrlem 36459 |
| Copyright terms: Public domain | W3C validator |