MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvraldva Structured version   Visualization version   GIF version

Theorem cbvraldva 3237
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2117, ax-ext 2704. (Revised by Wolf Lammen, 9-Mar-2025.)
Hypothesis
Ref Expression
cbvraldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvraldva (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvraldva
StepHypRef Expression
1 cbvraldva.1 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21ancoms 460 . . . . 5 ((𝑥 = 𝑦𝜑) → (𝜓𝜒))
32pm5.74da 803 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
43cbvralvw 3235 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑦𝐴 (𝜑𝜒))
5 r19.21v 3180 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
6 r19.21v 3180 . . 3 (∀𝑦𝐴 (𝜑𝜒) ↔ (𝜑 → ∀𝑦𝐴 𝜒))
74, 5, 63bitr3i 301 . 2 ((𝜑 → ∀𝑥𝐴 𝜓) ↔ (𝜑 → ∀𝑦𝐴 𝜒))
87pm5.74ri 272 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-clel 2811  df-ral 3063
This theorem is referenced by:  cbvrexdva  3238  wrd2ind  14673  axtgcont  27720
  Copyright terms: Public domain W3C validator