![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvraldva | Structured version Visualization version GIF version |
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2108, ax-ext 2696. (Revised by Wolf Lammen, 9-Mar-2025.) |
Ref | Expression |
---|---|
cbvraldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvraldva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
2 | 1 | ancoms 457 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝜓 ↔ 𝜒)) |
3 | 2 | pm5.74da 802 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
4 | 3 | cbvralvw 3225 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
5 | r19.21v 3170 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
6 | r19.21v 3170 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦 ∈ 𝐴 𝜒)) | |
7 | 4, 5, 6 | 3bitr3i 300 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∀𝑦 ∈ 𝐴 𝜒)) |
8 | 7 | pm5.74ri 271 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wral 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-clel 2802 df-ral 3052 |
This theorem is referenced by: cbvrexdva 3228 wrd2ind 14705 axtgcont 28317 |
Copyright terms: Public domain | W3C validator |