Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvopab1davw Structured version   Visualization version   GIF version

Theorem cbvopab1davw 36203
Description: Change the first bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvopab1davw.1 ((𝜑𝑥 = 𝑧) → (𝜓𝜒))
Assertion
Ref Expression
cbvopab1davw (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑧, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝜓,𝑧   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)

Proof of Theorem cbvopab1davw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4846 . . . . . . . 8 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
21adantl 481 . . . . . . 7 ((𝜑𝑥 = 𝑧) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
32eqeq2d 2745 . . . . . 6 ((𝜑𝑥 = 𝑧) → (𝑡 = ⟨𝑥, 𝑦⟩ ↔ 𝑡 = ⟨𝑧, 𝑦⟩))
4 cbvopab1davw.1 . . . . . 6 ((𝜑𝑥 = 𝑧) → (𝜓𝜒))
53, 4anbi12d 632 . . . . 5 ((𝜑𝑥 = 𝑧) → ((𝑡 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝑡 = ⟨𝑧, 𝑦⟩ ∧ 𝜒)))
65exbidv 1920 . . . 4 ((𝜑𝑥 = 𝑧) → (∃𝑦(𝑡 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑦(𝑡 = ⟨𝑧, 𝑦⟩ ∧ 𝜒)))
76cbvexdvaw 2037 . . 3 (𝜑 → (∃𝑥𝑦(𝑡 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑧𝑦(𝑡 = ⟨𝑧, 𝑦⟩ ∧ 𝜒)))
87abbidv 2800 . 2 (𝜑 → {𝑡 ∣ ∃𝑥𝑦(𝑡 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} = {𝑡 ∣ ∃𝑧𝑦(𝑡 = ⟨𝑧, 𝑦⟩ ∧ 𝜒)})
9 df-opab 5179 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑡 ∣ ∃𝑥𝑦(𝑡 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
10 df-opab 5179 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜒} = {𝑡 ∣ ∃𝑧𝑦(𝑡 = ⟨𝑧, 𝑦⟩ ∧ 𝜒)}
118, 9, 103eqtr4g 2794 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑧, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  {cab 2712  cop 4605  {copab 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-opab 5179
This theorem is referenced by:  cbvmptdavw  36206  cbvmptdavw2  36227
  Copyright terms: Public domain W3C validator