MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrmovw Structured version   Visualization version   GIF version

Theorem cbvrmovw 3402
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov 3429 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvrmovw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmovw (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrmovw
StepHypRef Expression
1 eleq1w 2823 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvrmovw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbvmovw 2601 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑦(𝑦𝐴𝜓))
5 df-rmo 3379 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
6 df-rmo 3379 . 2 (∃*𝑦𝐴 𝜓 ↔ ∃*𝑦(𝑦𝐴𝜓))
74, 5, 63bitr4i 303 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  ∃*wmo 2537  ∃*wrmo 3378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2539  df-clel 2815  df-rmo 3379
This theorem is referenced by:  cbvdisjv  5120
  Copyright terms: Public domain W3C validator