Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrmovw | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov 3388 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbvralvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrmovw | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | cbvralvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
4 | 3 | cbvmovw 2603 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
5 | df-rmo 3073 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | df-rmo 3073 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 ∃*wmo 2539 ∃*wrmo 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-mo 2541 df-clel 2817 df-rmo 3073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |