MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveuvw Structured version   Visualization version   GIF version

Theorem cbveuvw 2606
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu 2609 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994.) (Revised by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
cbveuvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveuvw (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbveuvw
StepHypRef Expression
1 cbveuvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvexvw 2041 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
31cbvmovw 2602 . . 3 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
42, 3anbi12i 626 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
5 df-eu 2569 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
6 df-eu 2569 . 2 (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
74, 5, 63bitr4i 302 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-mo 2540  df-eu 2569
This theorem is referenced by:  cbvreuvw  3375
  Copyright terms: Public domain W3C validator