|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbveuvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu 2607 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994.) (Revised by GG, 30-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| cbveuvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbveuvw | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbveuvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvexvw 2036 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
| 3 | 1 | cbvmovw 2602 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | 
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | 
| 5 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 6 | df-eu 2569 | . 2 ⊢ (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: cbvreuvw 3404 cbvreuvw2 36230 | 
| Copyright terms: Public domain | W3C validator |