Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbveuvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu 2609 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994.) (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbveuvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbveuvw | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveuvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvexvw 2041 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
3 | 1 | cbvmovw 2602 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
4 | 2, 3 | anbi12i 626 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) |
5 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
6 | df-eu 2569 | . 2 ⊢ (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 |
This theorem is referenced by: cbvreuvw 3375 |
Copyright terms: Public domain | W3C validator |