Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8mo | Structured version Visualization version GIF version |
Description: Variable substitution for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb8eu.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8mo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8eu.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb8e 2522 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
3 | 1 | sb8eu 2600 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
4 | 2, 3 | imbi12i 351 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)) |
5 | moeu 2583 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
6 | moeu 2583 | . 2 ⊢ (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 Ⅎwnf 1786 [wsb 2067 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 |
This theorem is referenced by: cbvmo 2605 |
Copyright terms: Public domain | W3C validator |