MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8mo Structured version   Visualization version   GIF version

Theorem sb8mo 2604
Description: Variable substitution for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb8eu.1 𝑦𝜑
Assertion
Ref Expression
sb8mo (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8mo
StepHypRef Expression
1 sb8eu.1 . . . 4 𝑦𝜑
21sb8e 2526 . . 3 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
31sb8eu 2603 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
42, 3imbi12i 350 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
5 moeu 2586 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
6 moeu 2586 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
74, 5, 63bitr4i 303 1 (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1777  wnf 1781  [wsb 2064  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572
This theorem is referenced by:  cbvmo  2607
  Copyright terms: Public domain W3C validator