| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb8mo | Structured version Visualization version GIF version | ||
| Description: Variable substitution for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb8eu.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| sb8mo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8eu.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | sb8e 2522 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 3 | 1 | sb8eu 2599 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
| 4 | 2, 3 | imbi12i 350 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)) |
| 5 | moeu 2582 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 6 | moeu 2582 | . 2 ⊢ (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 Ⅎwnf 1783 [wsb 2064 ∃*wmo 2537 ∃!weu 2567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 |
| This theorem is referenced by: cbvmo 2603 |
| Copyright terms: Public domain | W3C validator |