MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmo Structured version   Visualization version   GIF version

Theorem cbvmo 2605
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvmow 2603, cbvmovw 2602 when possible. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 4-Jan-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvmo.1 𝑦𝜑
cbvmo.2 𝑥𝜓
cbvmo.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvmo (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)

Proof of Theorem cbvmo
StepHypRef Expression
1 cbvmo.1 . . 3 𝑦𝜑
21sb8mo 2601 . 2 (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
3 cbvmo.2 . . . 4 𝑥𝜓
4 cbvmo.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 2506 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
65mobii 2548 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ ∃*𝑦𝜓)
72, 6bitri 274 1 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  [wsb 2067  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569
This theorem is referenced by:  cbveuALT  2610
  Copyright terms: Public domain W3C validator