| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmo | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvmow 2603, cbvmovw 2602 when possible. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 4-Jan-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvmo.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvmo.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvmo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmo.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | sb8mo 2601 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) |
| 3 | cbvmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | cbvmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbie 2507 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 6 | 5 | mobii 2548 | . 2 ⊢ (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ ∃*𝑦𝜓) |
| 7 | 2, 6 | bitri 275 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2064 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: cbveuALT 2608 |
| Copyright terms: Public domain | W3C validator |