Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmo | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvmow 2603, cbvmovw 2602 when possible. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 4-Jan-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvmo.1 | ⊢ Ⅎ𝑦𝜑 |
cbvmo.2 | ⊢ Ⅎ𝑥𝜓 |
cbvmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvmo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmo.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb8mo 2601 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) |
3 | cbvmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | cbvmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbie 2506 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | mobii 2548 | . 2 ⊢ (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ ∃*𝑦𝜓) |
7 | 2, 6 | bitri 274 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 [wsb 2068 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 |
This theorem is referenced by: cbveuALT 2610 |
Copyright terms: Public domain | W3C validator |