Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvral3v | Structured version Visualization version GIF version |
Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvral3vw 3398 when possible. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvral3v.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
cbvral3v.2 | ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) |
cbvral3v.3 | ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral3v.1 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
2 | 1 | 2ralbidv 3129 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒)) |
3 | 2 | cbvralv 3388 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒) |
4 | cbvral3v.2 | . . . 4 ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) | |
5 | cbvral3v.3 | . . . 4 ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) | |
6 | 4, 5 | cbvral2v 3399 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
7 | 6 | ralbii 3092 | . 2 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
8 | 3, 7 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clel 2816 df-nfc 2889 df-ral 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |