MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvral3v Structured version   Visualization version   GIF version

Theorem cbvral3v 3390
Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvral3vw 3387 when possible. (Contributed by NM, 10-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvral3v.1 (𝑥 = 𝑤 → (𝜑𝜒))
cbvral3v.2 (𝑦 = 𝑣 → (𝜒𝜃))
cbvral3v.3 (𝑧 = 𝑢 → (𝜃𝜓))
Assertion
Ref Expression
cbvral3v (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
Distinct variable groups:   𝜑,𝑤   𝜓,𝑧   𝜒,𝑥   𝜒,𝑣   𝜃,𝑦   𝜃,𝑢   𝑥,𝐴   𝑤,𝐴   𝑥,𝑦,𝐵   𝑦,𝑤,𝐵   𝑣,𝐵   𝑥,𝑧,𝐶,𝑦   𝑧,𝑤,𝐶   𝑧,𝑣,𝐶   𝑢,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣,𝑢)   𝜓(𝑥,𝑦,𝑤,𝑣,𝑢)   𝜒(𝑦,𝑧,𝑤,𝑢)   𝜃(𝑥,𝑧,𝑤,𝑣)   𝐴(𝑦,𝑧,𝑣,𝑢)   𝐵(𝑧,𝑢)

Proof of Theorem cbvral3v
StepHypRef Expression
1 cbvral3v.1 . . . 4 (𝑥 = 𝑤 → (𝜑𝜒))
212ralbidv 3122 . . 3 (𝑥 = 𝑤 → (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜒))
32cbvralv 3377 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑦𝐵𝑧𝐶 𝜒)
4 cbvral3v.2 . . . 4 (𝑦 = 𝑣 → (𝜒𝜃))
5 cbvral3v.3 . . . 4 (𝑧 = 𝑢 → (𝜃𝜓))
64, 5cbvral2v 3388 . . 3 (∀𝑦𝐵𝑧𝐶 𝜒 ↔ ∀𝑣𝐵𝑢𝐶 𝜓)
76ralbii 3090 . 2 (∀𝑤𝐴𝑦𝐵𝑧𝐶 𝜒 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
83, 7bitri 274 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clel 2817  df-nfc 2888  df-ral 3068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator