| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvral3v | Structured version Visualization version GIF version | ||
| Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvral3vw 3222 when possible. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvral3v.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
| cbvral3v.2 | ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) |
| cbvral3v.3 | ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral3v.1 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | 2ralbidv 3202 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒)) |
| 3 | 2 | cbvralv 3340 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒) |
| 4 | cbvral3v.2 | . . . 4 ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) | |
| 5 | cbvral3v.3 | . . . 4 ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) | |
| 6 | 4, 5 | cbvral2v 3344 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| 7 | 6 | ralbii 3076 | . 2 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| 8 | 3, 7 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clel 2804 df-nfc 2879 df-ral 3046 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |