MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrex2vw Structured version   Visualization version   GIF version

Theorem cbvrex2vw 3218
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3340 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by FL, 2-Jul-2012.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrex2vw.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvrex2vw.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvrex2vw (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑤   𝑥,𝐴,𝑧   𝑤,𝐵   𝑥,𝐵,𝑦,𝑧   𝜒,𝑤   𝜒,𝑥   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvrex2vw
StepHypRef Expression
1 cbvrex2vw.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21rexbidv 3157 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜒))
32cbvrexvw 3214 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑦𝐵 𝜒)
4 cbvrex2vw.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvrexvw 3214 . . 3 (∃𝑦𝐵 𝜒 ↔ ∃𝑤𝐵 𝜓)
65rexbii 3076 . 2 (∃𝑧𝐴𝑦𝐵 𝜒 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 275 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803  df-rex 3054
This theorem is referenced by:  omeu  8526  oeeui  8543  eroveu  8762  genpv  10928  bezoutlem3  16487  bezoutlem4  16488  bezout  16489  4sqlem2  16896  vdwnn  16945  efgrelexlema  19655  dyadmax  25475  2sqlem9  27314  2sq  27317  mulsval2lem  27989  mulsunif2  28049  precsexlemcbv  28084  eucliddivs  28241  legov  28488  dfcgra2  28733  gsumwun  32978  constrcbvlem  33718  pstmfval  33859  satfv0  35318  satfv0fun  35331  fmla1  35347  nn0prpwlem  36283  isbnd2  37750  hashnexinjle  42090  aks6d1c6lem3  42133  nna4b4nsq  42621  oaun3lem1  43336  limsupref  45656  fourierdlem42  46120  fourierdlem54  46131  mogoldbb  47759
  Copyright terms: Public domain W3C validator