![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrex2vw | Structured version Visualization version GIF version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3377 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by FL, 2-Jul-2012.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrex2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
cbvrex2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrex2vw | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrex2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | rexbidv 3185 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | cbvrexvw 3244 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | cbvrex2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
5 | 4 | cbvrexvw 3244 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑤 ∈ 𝐵 𝜓) |
6 | 5 | rexbii 3100 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
7 | 3, 6 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-rex 3077 |
This theorem is referenced by: omeu 8641 oeeui 8658 eroveu 8870 genpv 11068 bezoutlem3 16588 bezoutlem4 16589 bezout 16590 4sqlem2 16996 vdwnn 17045 efgrelexlema 19791 dyadmax 25652 2sqlem9 27489 2sq 27492 mulsval2lem 28154 mulsunif2 28214 precsexlemcbv 28248 legov 28611 dfcgra2 28856 pstmfval 33842 satfv0 35326 satfv0fun 35339 fmla1 35355 nn0prpwlem 36288 isbnd2 37743 hashnexinjle 42086 aks6d1c6lem3 42129 nna4b4nsq 42615 oaun3lem1 43336 limsupref 45606 fourierdlem42 46070 fourierdlem54 46081 mogoldbb 47659 |
Copyright terms: Public domain | W3C validator |