Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrex2vw | Structured version Visualization version GIF version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3389 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrex2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
cbvrex2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrex2vw | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrex2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | rexbidv 3225 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | cbvrexvw 3373 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | cbvrex2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
5 | 4 | cbvrexvw 3373 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑤 ∈ 𝐵 𝜓) |
6 | 5 | rexbii 3177 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 df-rex 3069 |
This theorem is referenced by: omeu 8378 oeeui 8395 eroveu 8559 genpv 10686 bezoutlem3 16177 bezoutlem4 16178 bezout 16179 4sqlem2 16578 vdwnn 16627 efgrelexlema 19270 dyadmax 24667 2sqlem9 26480 2sq 26483 legov 26850 dfcgra2 27095 pstmfval 31748 satfv0 33220 satfv0fun 33233 fmla1 33249 nn0prpwlem 34438 isbnd2 35868 nna4b4nsq 40413 limsupref 43116 fourierdlem42 43580 fourierdlem54 43591 mogoldbb 45125 |
Copyright terms: Public domain | W3C validator |