| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrex2vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3343 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by FL, 2-Jul-2012.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrex2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
| cbvrex2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrex2vw | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrex2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 3157 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | cbvrexvw 3216 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | cbvrex2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | cbvrexvw 3216 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑤 ∈ 𝐵 𝜓) |
| 6 | 5 | rexbii 3076 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: omeu 8549 oeeui 8566 eroveu 8785 genpv 10952 bezoutlem3 16511 bezoutlem4 16512 bezout 16513 4sqlem2 16920 vdwnn 16969 efgrelexlema 19679 dyadmax 25499 2sqlem9 27338 2sq 27341 mulsval2lem 28013 mulsunif2 28073 precsexlemcbv 28108 eucliddivs 28265 legov 28512 dfcgra2 28757 gsumwun 33005 constrcbvlem 33745 pstmfval 33886 satfv0 35345 satfv0fun 35358 fmla1 35374 nn0prpwlem 36310 isbnd2 37777 hashnexinjle 42117 aks6d1c6lem3 42160 nna4b4nsq 42648 oaun3lem1 43363 limsupref 45683 fourierdlem42 46147 fourierdlem54 46158 mogoldbb 47783 |
| Copyright terms: Public domain | W3C validator |