| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrex2vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3332 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by FL, 2-Jul-2012.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrex2vw.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) |
| cbvrex2vw.2 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrex2vw | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrex2vw.1 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 3153 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | cbvrexvw 3208 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | cbvrex2vw.2 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 5 | 4 | cbvrexvw 3208 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑤 ∈ 𝐵 𝜓) |
| 6 | 5 | rexbii 3076 | . 2 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: omeu 8503 oeeui 8520 eroveu 8739 genpv 10893 bezoutlem3 16452 bezoutlem4 16453 bezout 16454 4sqlem2 16861 vdwnn 16910 efgrelexlema 19628 dyadmax 25497 2sqlem9 27336 2sq 27339 mulsval2lem 28018 mulsunif2 28078 precsexlemcbv 28113 eucliddivs 28270 zs12zodd 28359 legov 28530 dfcgra2 28775 gsumwun 33018 constrcbvlem 33722 pstmfval 33863 satfv0 35331 satfv0fun 35344 fmla1 35360 nn0prpwlem 36296 isbnd2 37763 hashnexinjle 42102 aks6d1c6lem3 42145 nna4b4nsq 42633 oaun3lem1 43347 limsupref 45666 fourierdlem42 46130 fourierdlem54 46141 mogoldbb 47769 |
| Copyright terms: Public domain | W3C validator |