Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffltz Structured version   Visualization version   GIF version

Theorem dffltz 39408
Description: Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎𝑛) + (𝑏𝑛) = (𝑐𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.)
Assertion
Ref Expression
dffltz (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Distinct variable group:   𝑛,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧

Proof of Theorem dffltz
StepHypRef Expression
1 simp-4r 782 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑎 ∈ (ℤ ∖ {0}))
2 eldifi 4082 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ∈ ℤ)
3 eldifsni 4698 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ≠ 0)
42, 3jca 514 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ∖ {0}) → (𝑎 ∈ ℤ ∧ 𝑎 ≠ 0))
5 nnabscl 14665 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
61, 4, 53syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑎) ∈ ℕ)
7 simp-6r 786 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
87eldifad 3925 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
9 simplr 767 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
10 elnnz 11970 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
118, 9, 10sylanbrc 585 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℕ)
12 eldifsni 4698 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
1312ad6antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ≠ 0)
14 simplr 767 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑏)
15 eldifi 4082 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
1615ad6antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
1713, 14, 16negn0nposznnd 39288 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑏 ∈ ℕ)
18 simp-7r 788 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
1918eldifad 3925 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
20 simpllr 774 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑎)
2119, 20, 10sylanbrc 585 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℕ)
2217, 21ifclda 4477 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, -𝑏, 𝑎) ∈ ℕ)
2311, 22ifclda 4477 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) ∈ ℕ)
243ad7antlr 737 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ≠ 0)
25 simpllr 774 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑎)
262ad7antlr 737 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
2724, 25, 26negn0nposznnd 39288 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑎 ∈ ℕ)
28 simp-6r 786 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
2928eldifad 3925 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
30 simplr 767 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑏)
31 elnnz 11970 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
3229, 30, 31sylanbrc 585 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℕ)
3327, 32ifclda 4477 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, -𝑎, 𝑏) ∈ ℕ)
343ad6antlr 735 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
35 simplr 767 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
362ad6antlr 735 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
3734, 35, 36negn0nposznnd 39288 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑎 ∈ ℕ)
3833, 37ifclda 4477 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) ∈ ℕ)
3923, 38ifclda 4477 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) ∈ ℕ)
406, 39ifcld 4488 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) ∈ ℕ)
41 simpllr 774 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑏 ∈ (ℤ ∖ {0}))
4215, 12jca 514 . . . . . . . . . . 11 (𝑏 ∈ (ℤ ∖ {0}) → (𝑏 ∈ ℤ ∧ 𝑏 ≠ 0))
43 nnabscl 14665 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ 𝑏 ≠ 0) → (abs‘𝑏) ∈ ℕ)
4441, 42, 433syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑏) ∈ ℕ)
45 simp-5r 784 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
4645eldifad 3925 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
47 simpr 487 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
4846, 47, 31sylanbrc 585 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℕ)
49 simp-5r 784 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
5049eldifad 3925 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
51 simpr 487 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
52 elnnz 11970 . . . . . . . . . . . . . 14 (𝑐 ∈ ℕ ↔ (𝑐 ∈ ℤ ∧ 0 < 𝑐))
5350, 51, 52sylanbrc 585 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
54 eldifsni 4698 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ≠ 0)
5554ad5antlr 733 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
56 simpr 487 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
57 eldifi 4082 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ∈ ℤ)
5857ad5antlr 733 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
5955, 56, 58negn0nposznnd 39288 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
6053, 59ifclda 4477 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
6148, 60ifclda 4477 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) ∈ ℕ)
62 simp-5r 784 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
6362eldifad 3925 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
64 simpr 487 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
6563, 64, 52sylanbrc 585 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
6654ad5antlr 733 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
67 simpr 487 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
6857ad5antlr 733 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
6966, 67, 68negn0nposznnd 39288 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
7065, 69ifclda 4477 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
7112ad5antlr 733 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
72 simpr 487 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
7315ad5antlr 733 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
7471, 72, 73negn0nposznnd 39288 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑏 ∈ ℕ)
7570, 74ifclda 4477 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) ∈ ℕ)
7661, 75ifclda 4477 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) ∈ ℕ)
7744, 76ifcld 4488 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) ∈ ℕ)
78 simpllr 774 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ (ℤ ∖ {0}))
7978eldifad 3925 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℤ)
8078, 54syl 17 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ≠ 0)
81 nnabscl 14665 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑐 ≠ 0) → (abs‘𝑐) ∈ ℕ)
8279, 80, 81syl2anc 586 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℕ)
83 simp-5r 784 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
8483eldifad 3925 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℤ)
85 simp-7r 788 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
8685eldifad 3925 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
8786zred 12066 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℝ)
88 eluzge3nn 12269 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℕ)
8988ad7antr 736 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ)
9089nnnn0d 11934 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ0)
9187, 90reexpcld 13512 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
92 simp-6r 786 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
9392eldifad 3925 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
9493zred 12066 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℝ)
9594, 90reexpcld 13512 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
96 simplr 767 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
97 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
9887, 89, 97oexpreposd 39299 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
9996, 98mpbid 234 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑎𝑛))
100 simpr 487 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
10194, 89, 97oexpreposd 39299 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
102100, 101mpbid 234 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑏𝑛))
10391, 95, 99, 102addgt0d 11193 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < ((𝑎𝑛) + (𝑏𝑛)))
104 simp-4r 782 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
105103, 104breqtrd 5068 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑐𝑛))
10684zred 12066 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℝ)
107106, 89, 97oexpreposd 39299 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
108105, 107mpbird 259 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑐)
10984, 108, 52sylanbrc 585 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℕ)
110 simp-8r 790 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
111110eldifad 3925 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
112 simpllr 774 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑎)
113111, 112, 10sylanbrc 585 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℕ)
114 simp-7r 788 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
115114, 12syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ≠ 0)
116 simplr 767 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑏)
117114eldifad 3925 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
118115, 116, 117negn0nposznnd 39288 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑏 ∈ ℕ)
119113, 118ifclda 4477 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑎, -𝑏) ∈ ℕ)
120109, 119ifclda 4477 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) ∈ ℕ)
121 simp-7r 788 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
122121eldifad 3925 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
123 simplr 767 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑏)
124122, 123, 31sylanbrc 585 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℕ)
125 simp-8r 790 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
126125, 3syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ≠ 0)
127 simpllr 774 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑎)
128125eldifad 3925 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
129126, 127, 128negn0nposznnd 39288 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑎 ∈ ℕ)
130124, 129ifclda 4477 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑏, -𝑎) ∈ ℕ)
131 simp-5r 784 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
132131, 54syl 17 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ≠ 0)
133 simp-7r 788 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
134133eldifad 3925 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
135134zred 12066 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℝ)
13688ad7antr 736 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ)
137136nnnn0d 11934 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ0)
138135, 137reexpcld 13512 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
139 simp-6r 786 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
140139eldifad 3925 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
141140zred 12066 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℝ)
142141, 137reexpcld 13512 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
143138, 142readdcld 10648 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) ∈ ℝ)
144 0red 10622 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 0 ∈ ℝ)
1453neneqd 3011 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℤ ∖ {0}) → ¬ 𝑎 = 0)
146133, 145syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 𝑎 = 0)
147 zcn 11965 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
148133, 2, 1473syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℂ)
149 expeq0 13444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
150148, 136, 149syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
151146, 150mtbird 327 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑎𝑛) = 0)
152 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
153 simpllr 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
154135, 136, 153oexpreposd 39299 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
155152, 154mtbid 326 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑎𝑛))
156 ioran 980 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)) ↔ (¬ (𝑎𝑛) = 0 ∧ ¬ 0 < (𝑎𝑛)))
157151, 155, 156sylanbrc 585 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)))
158138, 144lttrid 10756 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) < 0 ↔ ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛))))
159157, 158mpbird 259 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) < 0)
160 zcn 11965 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
161139, 15, 1603syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℂ)
162139, 12syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
163 eluzelz 12232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℤ)
164163ad7antr 736 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℤ)
165161, 162, 164expne0d 13501 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ≠ 0)
166165neneqd 3011 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑏𝑛) = 0)
167 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
168141, 136, 153oexpreposd 39299 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
169167, 168mtbid 326 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑏𝑛))
170 ioran 980 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)) ↔ (¬ (𝑏𝑛) = 0 ∧ ¬ 0 < (𝑏𝑛)))
171166, 169, 170sylanbrc 585 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)))
172142, 144lttrid 10756 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑏𝑛) < 0 ↔ ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛))))
173171, 172mpbird 259 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) < 0)
174138, 142, 144, 144, 159, 173lt2addd 11241 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < (0 + 0))
175 00id 10793 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
176174, 175breqtrdi 5083 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < 0)
177143, 144, 176ltnsymd 10767 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < ((𝑎𝑛) + (𝑏𝑛)))
178 simp-4r 782 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
179178eqcomd 2826 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
180179breq2d 5054 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < (𝑐𝑛) ↔ 0 < ((𝑎𝑛) + (𝑏𝑛))))
181177, 180mtbird 327 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑐𝑛))
182131eldifad 3925 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℤ)
183182zred 12066 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℝ)
184183, 136, 153oexpreposd 39299 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
185181, 184mtbird 327 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑐)
186132, 185, 182negn0nposznnd 39288 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑐 ∈ ℕ)
187130, 186ifclda 4477 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) ∈ ℕ)
188120, 187ifclda 4477 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) ∈ ℕ)
18982, 188ifclda 4477 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) ∈ ℕ)
190 oveq1 7140 . . . . . . . . . . . 12 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (𝑥𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛))
191190oveq1d 7148 . . . . . . . . . . 11 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → ((𝑥𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)))
192191eqeq1d 2822 . . . . . . . . . 10 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
193192adantl 484 . . . . . . . . 9 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))) → (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
194 oveq1 7140 . . . . . . . . . . . 12 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (𝑦𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛))
195194oveq2d 7149 . . . . . . . . . . 11 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)))
196195eqeq1d 2822 . . . . . . . . . 10 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛)))
197196adantl 484 . . . . . . . . 9 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛)))
198 oveq1 7140 . . . . . . . . . . 11 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (𝑧𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
199198eqeq2d 2831 . . . . . . . . . 10 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)))
200199adantl 484 . . . . . . . . 9 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)))
201 simplr 767 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
202 simp-5r 784 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ (ℤ ∖ {0}))
203202eldifad 3925 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℤ)
204203zred 12066 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℝ)
205 absresq 14642 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → ((abs‘𝑎)↑2) = (𝑎↑2))
206204, 205syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑2) = (𝑎↑2))
207206oveq1d 7148 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑2)↑(𝑛 / 2)) = ((𝑎↑2)↑(𝑛 / 2)))
208202, 2, 1473syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℂ)
209208abscld 14776 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℝ)
210209recnd 10647 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℂ)
211 simpr 487 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ)
212211nnnn0d 11934 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ0)
213 2nn0 11893 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
214213a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℕ0)
215210, 212, 214expmuld 13498 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (((abs‘𝑎)↑2)↑(𝑛 / 2)))
216208, 212, 214expmuld 13498 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎↑(2 · (𝑛 / 2))) = ((𝑎↑2)↑(𝑛 / 2)))
217207, 215, 2163eqtr4d 2865 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (𝑎↑(2 · (𝑛 / 2))))
218 simp-5l 783 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ (ℤ‘3))
219 nncn 11624 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
220218, 88, 2193syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ ℂ)
221 2cnd 11694 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℂ)
222 2ne0 11720 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
223222a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ≠ 0)
224220, 221, 223divcan2d 11396 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (2 · (𝑛 / 2)) = 𝑛)
225224eqcomd 2826 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 = (2 · (𝑛 / 2)))
226225oveq2d 7149 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = ((abs‘𝑎)↑(2 · (𝑛 / 2))))
227225oveq2d 7149 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎𝑛) = (𝑎↑(2 · (𝑛 / 2))))
228217, 226, 2273eqtr4d 2865 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = (𝑎𝑛))
229 simp-4r 782 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ (ℤ ∖ {0}))
230229eldifad 3925 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℤ)
231230zred 12066 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℝ)
232 absresq 14642 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → ((abs‘𝑏)↑2) = (𝑏↑2))
233231, 232syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑2) = (𝑏↑2))
234233oveq1d 7148 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑏)↑2)↑(𝑛 / 2)) = ((𝑏↑2)↑(𝑛 / 2)))
235229, 15, 1603syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℂ)
236235abscld 14776 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℝ)
237236recnd 10647 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℂ)
238237, 212, 214expmuld 13498 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (((abs‘𝑏)↑2)↑(𝑛 / 2)))
239235, 212, 214expmuld 13498 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏↑(2 · (𝑛 / 2))) = ((𝑏↑2)↑(𝑛 / 2)))
240234, 238, 2393eqtr4d 2865 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (𝑏↑(2 · (𝑛 / 2))))
241225oveq2d 7149 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = ((abs‘𝑏)↑(2 · (𝑛 / 2))))
242225oveq2d 7149 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏𝑛) = (𝑏↑(2 · (𝑛 / 2))))
243240, 241, 2423eqtr4d 2865 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = (𝑏𝑛))
244228, 243oveq12d 7151 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
24579zred 12066 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℝ)
246 absresq 14642 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ → ((abs‘𝑐)↑2) = (𝑐↑2))
247245, 246syl 17 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑2) = (𝑐↑2))
248247oveq1d 7148 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑐)↑2)↑(𝑛 / 2)) = ((𝑐↑2)↑(𝑛 / 2)))
249 zcn 11965 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℤ → 𝑐 ∈ ℂ)
25078, 57, 2493syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℂ)
251250abscld 14776 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℝ)
252251recnd 10647 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℂ)
253252, 212, 214expmuld 13498 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (((abs‘𝑐)↑2)↑(𝑛 / 2)))
254250, 212, 214expmuld 13498 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐↑(2 · (𝑛 / 2))) = ((𝑐↑2)↑(𝑛 / 2)))
255248, 253, 2543eqtr4d 2865 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (𝑐↑(2 · (𝑛 / 2))))
256225oveq2d 7149 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = ((abs‘𝑐)↑(2 · (𝑛 / 2))))
257225oveq2d 7149 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐𝑛) = (𝑐↑(2 · (𝑛 / 2))))
258255, 256, 2573eqtr4d 2865 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = (𝑐𝑛))
259201, 244, 2583eqtr4d 2865 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((abs‘𝑐)↑𝑛))
260 iftrue 4449 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = (abs‘𝑎))
261260oveq1d 7148 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = ((abs‘𝑎)↑𝑛))
262 iftrue 4449 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = (abs‘𝑏))
263262oveq1d 7148 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = ((abs‘𝑏)↑𝑛))
264261, 263oveq12d 7151 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
265264adantl 484 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
266 iftrue 4449 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = (abs‘𝑐))
267266oveq1d 7148 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
268267adantl 484 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
269259, 265, 2683eqtr4d 2865 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
270 iftrue 4449 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = 𝑎)
271270oveq1d 7148 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (𝑎𝑛))
272 iftrue 4449 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = 𝑏)
273272oveq1d 7148 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (𝑏𝑛))
274271, 273oveq12d 7151 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
275274adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
276 iftrue 4449 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = 𝑐)
277276oveq1d 7148 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
278277adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
279104, 275, 2783eqtr4d 2865 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
280 simp-7r 788 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
281280, 15, 1603syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
282 simp-8l 789 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
283282, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
284 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
285 2nn 11689 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
286 nndivdvds 15596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
287283, 285, 286sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
288284, 287mtbird 327 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
289 oexpneg 15674 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑏𝑛) = -(𝑏𝑛))
290281, 283, 288, 289syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
291290oveq1d 7148 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (-(𝑏𝑛) + (𝑐𝑛)))
292 nnnn0 11883 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
293282, 88, 2923syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
294281, 293expcld 13495 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
295294negcld 10962 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
296 simp-6r 786 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
297296, 57, 2493syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
298297, 293expcld 13495 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
299295, 298addcomd 10820 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
300298, 294negsubd 10981 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
301299, 300eqtrd 2855 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
302110, 2, 1473syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
303302, 293expcld 13495 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
304 simp-5r 784 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
305304eqcomd 2826 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
306303, 294, 305mvrraddd 11030 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
307291, 301, 3063eqtrd 2859 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
308 iftrue 4449 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = -𝑏)
309308oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (-𝑏𝑛))
310 iftrue 4449 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = 𝑐)
311310oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (𝑐𝑛))
312309, 311oveq12d 7151 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
313312adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
314 iftrue 4449 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = 𝑎)
315314oveq1d 7148 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
316315adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
317307, 313, 3163eqtr4d 2865 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
318 simp-8r 790 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
319318, 2, 1473syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
32088ad8antr 738 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
321320nnnn0d 11934 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
322319, 321expcld 13495 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
323 simp-6r 786 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
324323, 57, 2493syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
325324, 321expcld 13495 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
326322, 325negsubd 10981 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = ((𝑎𝑛) − (𝑐𝑛)))
327322, 325subcld 10975 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) ∈ ℂ)
328114, 15, 1603syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
329328, 321expcld 13495 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
330329negcld 10962 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
331 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
332322, 329, 331mvlraddd 11028 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) = ((𝑐𝑛) − (𝑏𝑛)))
333325, 322pncan3d 10978 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = (𝑎𝑛))
334325, 329negsubd 10981 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
335332, 333, 3343eqtr4d 2865 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = ((𝑐𝑛) + -(𝑏𝑛)))
336325, 327, 330, 335addcanad 10823 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) = -(𝑏𝑛))
337326, 336eqtrd 2855 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = -(𝑏𝑛))
338 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
339320, 285, 286sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
340338, 339mtbird 327 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
341 oexpneg 15674 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑐𝑛) = -(𝑐𝑛))
342324, 320, 340, 341syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
343342oveq2d 7149 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = ((𝑎𝑛) + -(𝑐𝑛)))
344328, 320, 340, 289syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
345337, 343, 3443eqtr4d 2865 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = (-𝑏𝑛))
346 iffalse 4452 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = 𝑎)
347346oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (𝑎𝑛))
348 iffalse 4452 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = -𝑐)
349348oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (-𝑐𝑛))
350347, 349oveq12d 7151 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
351350adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
352 iffalse 4452 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = -𝑏)
353352oveq1d 7148 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
354353adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
355345, 351, 3543eqtr4d 2865 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
356317, 355pm2.61dan 811 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
357 iffalse 4452 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = if(0 < 𝑐, -𝑏, 𝑎))
358357oveq1d 7148 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛))
359 iffalse 4452 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = if(0 < 𝑐, 𝑐, -𝑐))
360359oveq1d 7148 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
361358, 360oveq12d 7151 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
362361adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
363 iffalse 4452 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = if(0 < 𝑐, 𝑎, -𝑏))
364363oveq1d 7148 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
365364adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
366356, 362, 3653eqtr4d 2865 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
367279, 366pm2.61dan 811 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
368 iftrue 4449 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)))
369368oveq1d 7148 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛))
370 iftrue 4449 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)))
371370oveq1d 7148 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛))
372369, 371oveq12d 7151 . . . . . . . . . . . . . 14 (0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
373372adantl 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
374 iftrue 4449 . . . . . . . . . . . . . . 15 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)))
375374oveq1d 7148 . . . . . . . . . . . . . 14 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
376375adantl 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
377367, 373, 3763eqtr4d 2865 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
378 simp-8r 790 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
379378, 2, 1473syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
38088ad8antr 738 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
381 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
382380, 285, 286sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
383381, 382mtbird 327 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
384 oexpneg 15674 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑎𝑛) = -(𝑎𝑛))
385379, 380, 383, 384syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
386385oveq1d 7148 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (-(𝑎𝑛) + (𝑐𝑛)))
387380nnnn0d 11934 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
388379, 387expcld 13495 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
389388negcld 10962 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑎𝑛) ∈ ℂ)
390 simp-6r 786 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
391390, 57, 2493syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
392391, 387expcld 13495 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
393389, 392addcld 10638 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) ∈ ℂ)
394121, 15, 1603syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
395394, 387expcld 13495 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
396388negidd 10965 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + -(𝑎𝑛)) = 0)
397396oveq1d 7148 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = (0 + (𝑐𝑛)))
398388, 389, 392addassd 10641 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))))
399392addid2d 10819 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (0 + (𝑐𝑛)) = (𝑐𝑛))
400397, 398, 3993eqtr3d 2863 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = (𝑐𝑛))
401 simp-5r 784 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
402400, 401eqtr4d 2858 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = ((𝑎𝑛) + (𝑏𝑛)))
403388, 393, 395, 402addcanad 10823 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
404386, 403eqtrd 2855 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
405 iftrue 4449 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = -𝑎)
406405oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (-𝑎𝑛))
407406, 311oveq12d 7151 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
408407adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
409 iftrue 4449 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = 𝑏)
410409oveq1d 7148 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
411410adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
412404, 408, 4113eqtr4d 2865 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
413 simp-7r 788 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
414413, 15, 1603syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
415 simp-8l 789 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
416415, 88, 2923syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
417414, 416expcld 13495 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
418417negcld 10962 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
419 simp-6r 786 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
420419, 57, 2493syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
421420, 416expcld 13495 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
422418, 421addcomd 10820 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
423421, 417negsubd 10981 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
424 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
425424oveq1d 7148 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
426125, 2, 1473syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
427426, 416expcld 13495 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
428427, 417pncand 10976 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = (𝑎𝑛))
429425, 428eqtr3d 2857 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
430422, 423, 4293eqtrd 2859 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
431430negeqd 10858 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = -(𝑎𝑛))
432417negnegd 10966 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → --(𝑏𝑛) = (𝑏𝑛))
433432eqcomd 2826 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) = --(𝑏𝑛))
434433oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + -(𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
435415, 88syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
436 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
437435, 285, 286sylancl 588 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
438436, 437mtbird 327 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
439420, 435, 438, 341syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
440439oveq2d 7149 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = ((𝑏𝑛) + -(𝑐𝑛)))
441418, 421negdid 10988 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
442434, 440, 4413eqtr4d 2865 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = -(-(𝑏𝑛) + (𝑐𝑛)))
443426, 435, 438, 384syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
444431, 442, 4433eqtr4d 2865 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = (-𝑎𝑛))
445 iffalse 4452 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = 𝑏)
446445oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (𝑏𝑛))
447446, 349oveq12d 7151 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
448447adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
449 iffalse 4452 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = -𝑎)
450449oveq1d 7148 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
451450adantl 484 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
452444, 448, 4513eqtr4d 2865 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
453412, 452pm2.61dan 811 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
454 iftrue 4449 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = if(0 < 𝑐, -𝑎, 𝑏))
455454oveq1d 7148 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛))
456 iftrue 4449 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = if(0 < 𝑐, 𝑐, -𝑐))
457456oveq1d 7148 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
458455, 457oveq12d 7151 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
459458adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
460 iftrue 4449 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = if(0 < 𝑐, 𝑏, -𝑎))
461460oveq1d 7148 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
462461adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
463453, 459, 4623eqtr4d 2865 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
464178negeqd 10858 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = -(𝑐𝑛))
465136, 285, 286sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
466153, 465mtbird 327 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 2 ∥ 𝑛)
467148, 136, 466, 384syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑎𝑛) = -(𝑎𝑛))
468161, 136, 466, 289syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑏𝑛) = -(𝑏𝑛))
469467, 468oveq12d 7151 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
470133, 3syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
471148, 470, 164expclzd 13500 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℂ)
472161, 162, 164expclzd 13500 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℂ)
473471, 472negdid 10988 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
474469, 473eqtr4d 2858 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = -((𝑎𝑛) + (𝑏𝑛)))
475131, 57, 2493syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℂ)
476475, 136, 466, 341syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑐𝑛) = -(𝑐𝑛))
477464, 474, 4763eqtr4d 2865 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-𝑐𝑛))
478 iffalse 4452 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = -𝑎)
479478oveq1d 7148 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (-𝑎𝑛))
480 iffalse 4452 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = -𝑏)
481480oveq1d 7148 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (-𝑏𝑛))
482479, 481oveq12d 7151 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
483482adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
484 iffalse 4452 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = -𝑐)
485484oveq1d 7148 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
486485adantl 484 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
487477, 483, 4863eqtr4d 2865 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
488463, 487pm2.61dan 811 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
489 iffalse 4452 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))
490489oveq1d 7148 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛))
491 iffalse 4452 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))
492491oveq1d 7148 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛))
493490, 492oveq12d 7151 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
494493adantl 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
495 iffalse 4452 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))
496495oveq1d 7148 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
497496adantl 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
498488, 494, 4973eqtr4d 2865 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
499377, 498pm2.61dan 811 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
500 iffalse 4452 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))
501500oveq1d 7148 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛))
502 iffalse 4452 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))
503502oveq1d 7148 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛))
504501, 503oveq12d 7151 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
505504adantl 484 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
506 iffalse 4452 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))
507506oveq1d 7148 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
508507adantl 484 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
509499, 505, 5083eqtr4d 2865 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
510269, 509pm2.61dan 811 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
51140, 77, 189, 193, 197, 200, 5103rspcedvd 39217 . . . . . . . 8 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
512511rexlimdva2 3274 . . . . . . 7 (((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) → (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
513512rexlimdva 3271 . . . . . 6 ((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) → (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
514513rexlimdva 3271 . . . . 5 (𝑛 ∈ (ℤ‘3) → (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
515514reximia 3229 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
516 nne 3010 . . . . . . . . . . . . 13 (¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
517516bicomi 226 . . . . . . . . . . . 12 (((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
518517rexbii 3234 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
519 rexnal 3225 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
520518, 519bitri 277 . . . . . . . . . 10 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
521520rexbii 3234 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
522 rexnal 3225 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
523521, 522bitri 277 . . . . . . . 8 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
524523rexbii 3234 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
525 rexnal 3225 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
526524, 525bitri 277 . . . . . 6 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
527526rexbii 3234 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
528 rexnal 3225 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
529527, 528bitri 277 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
530 nne 3010 . . . . . . . . . . . . 13 (¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
531530bicomi 226 . . . . . . . . . . . 12 (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
532531rexbii 3234 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
533 rexnal 3225 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
534532, 533bitri 277 . . . . . . . . . 10 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
535534rexbii 3234 . . . . . . . . 9 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
536 rexnal 3225 . . . . . . . . 9 (∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
537535, 536bitri 277 . . . . . . . 8 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
538537rexbii 3234 . . . . . . 7 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
539 rexnal 3225 . . . . . . 7 (∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
540538, 539bitri 277 . . . . . 6 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
541540rexbii 3234 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
542 rexnal 3225 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
543541, 542bitri 277 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
544515, 529, 5433imtr3i 293 . . 3 (¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
545544con4i 114 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
546 0nnn 11652 . . . . . . . 8 ¬ 0 ∈ ℕ
547 disjsn 4623 . . . . . . . 8 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
548546, 547mpbir 233 . . . . . . 7 (ℕ ∩ {0}) = ∅
549 disj3 4379 . . . . . . 7 ((ℕ ∩ {0}) = ∅ ↔ ℕ = (ℕ ∖ {0}))
550548, 549mpbi 232 . . . . . 6 ℕ = (ℕ ∖ {0})
551 nnssz 11981 . . . . . . 7 ℕ ⊆ ℤ
552 ssdif 4095 . . . . . . 7 (ℕ ⊆ ℤ → (ℕ ∖ {0}) ⊆ (ℤ ∖ {0}))
553551, 552ax-mp 5 . . . . . 6 (ℕ ∖ {0}) ⊆ (ℤ ∖ {0})
554550, 553eqsstri 3980 . . . . 5 ℕ ⊆ (ℤ ∖ {0})
555 ssel 3940 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ ∖ {0})))
556 ss2ralv 4014 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
557555, 556imim12d 81 . . . . . 6 (ℕ ⊆ (ℤ ∖ {0}) → ((𝑎 ∈ (ℤ ∖ {0}) → ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)) → (𝑎 ∈ ℕ → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))))
558557ralimdv2 3163 . . . . 5 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
559554, 558ax-mp 5 . . . 4 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
560 oveq1 7140 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑛) = (𝑥𝑛))
561560oveq1d 7148 . . . . . 6 (𝑎 = 𝑥 → ((𝑎𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑏𝑛)))
562561neeq1d 3065 . . . . 5 (𝑎 = 𝑥 → (((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
563 oveq1 7140 . . . . . . 7 (𝑏 = 𝑦 → (𝑏𝑛) = (𝑦𝑛))
564563oveq2d 7149 . . . . . 6 (𝑏 = 𝑦 → ((𝑥𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑦𝑛)))
565564neeq1d 3065 . . . . 5 (𝑏 = 𝑦 → (((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛)))
566 oveq1 7140 . . . . . 6 (𝑐 = 𝑧 → (𝑐𝑛) = (𝑧𝑛))
567566neeq2d 3066 . . . . 5 (𝑐 = 𝑧 → (((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛)))
568562, 565, 567cbvral3vw 3442 . . . 4 (∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
569559, 568sylib 220 . . 3 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
570569ralimi 3147 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
571545, 570impbii 211 1 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3006  wral 3125  wrex 3126  cdif 3910  cin 3912  wss 3913  c0 4269  ifcif 4443  {csn 4543   class class class wbr 5042  cfv 6331  (class class class)co 7133  cc 10513  cr 10514  0cc0 10515   + caddc 10518   · cmul 10520   < clt 10653  cmin 10848  -cneg 10849   / cdiv 11275  cn 11616  2c2 11671  3c3 11672  0cn0 11876  cz 11960  cuz 12222  cexp 13414  abscabs 14573  cdvds 15587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-q 12328  df-rp 12369  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-dvds 15588  df-gcd 15822  df-numer 16053  df-denom 16054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator