Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffltz Structured version   Visualization version   GIF version

Theorem dffltz 40471
Description: Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎𝑛) + (𝑏𝑛) = (𝑐𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.)
Assertion
Ref Expression
dffltz (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Distinct variable group:   𝑛,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧

Proof of Theorem dffltz
StepHypRef Expression
1 oveq1 7282 . . . . . . . . . . 11 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (𝑥𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛))
21oveq1d 7290 . . . . . . . . . 10 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → ((𝑥𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)))
32eqeq1d 2740 . . . . . . . . 9 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
4 oveq1 7282 . . . . . . . . . . 11 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (𝑦𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛))
54oveq2d 7291 . . . . . . . . . 10 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)))
65eqeq1d 2740 . . . . . . . . 9 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛)))
7 oveq1 7282 . . . . . . . . . 10 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (𝑧𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
87eqeq2d 2749 . . . . . . . . 9 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)))
9 simp-4r 781 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑎 ∈ (ℤ ∖ {0}))
10 eldifi 4061 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ∈ ℤ)
11 eldifsni 4723 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ≠ 0)
1210, 11jca 512 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ∖ {0}) → (𝑎 ∈ ℤ ∧ 𝑎 ≠ 0))
13 nnabscl 15037 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
149, 12, 133syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑎) ∈ ℕ)
15 simp-6r 785 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
1615eldifad 3899 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
17 simplr 766 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
18 elnnz 12329 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
1916, 17, 18sylanbrc 583 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℕ)
20 eldifsni 4723 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
2120ad6antlr 734 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ≠ 0)
22 simplr 766 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑏)
23 eldifi 4061 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
2423ad6antlr 734 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
2521, 22, 24negn0nposznnd 40310 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑏 ∈ ℕ)
26 simp-7r 787 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
2726eldifad 3899 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
28 simpllr 773 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑎)
2927, 28, 18sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℕ)
3025, 29ifclda 4494 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, -𝑏, 𝑎) ∈ ℕ)
3119, 30ifclda 4494 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) ∈ ℕ)
3211ad7antlr 736 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ≠ 0)
33 simpllr 773 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑎)
3410ad7antlr 736 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
3532, 33, 34negn0nposznnd 40310 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑎 ∈ ℕ)
36 simp-6r 785 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
3736eldifad 3899 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
38 simplr 766 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑏)
39 elnnz 12329 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
4037, 38, 39sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℕ)
4135, 40ifclda 4494 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, -𝑎, 𝑏) ∈ ℕ)
4211ad6antlr 734 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
43 simplr 766 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
4410ad6antlr 734 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
4542, 43, 44negn0nposznnd 40310 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑎 ∈ ℕ)
4641, 45ifclda 4494 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) ∈ ℕ)
4731, 46ifclda 4494 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) ∈ ℕ)
4814, 47ifcld 4505 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) ∈ ℕ)
49 simpllr 773 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑏 ∈ (ℤ ∖ {0}))
5023, 20jca 512 . . . . . . . . . . 11 (𝑏 ∈ (ℤ ∖ {0}) → (𝑏 ∈ ℤ ∧ 𝑏 ≠ 0))
51 nnabscl 15037 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ 𝑏 ≠ 0) → (abs‘𝑏) ∈ ℕ)
5249, 50, 513syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑏) ∈ ℕ)
53 simp-5r 783 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
5453eldifad 3899 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
55 simpr 485 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
5654, 55, 39sylanbrc 583 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℕ)
57 simp-5r 783 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
5857eldifad 3899 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
59 simpr 485 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
60 elnnz 12329 . . . . . . . . . . . . . 14 (𝑐 ∈ ℕ ↔ (𝑐 ∈ ℤ ∧ 0 < 𝑐))
6158, 59, 60sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
62 eldifsni 4723 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ≠ 0)
6362ad5antlr 732 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
64 simpr 485 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
65 eldifi 4061 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ∈ ℤ)
6665ad5antlr 732 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
6763, 64, 66negn0nposznnd 40310 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
6861, 67ifclda 4494 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
6956, 68ifclda 4494 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) ∈ ℕ)
70 simp-5r 783 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
7170eldifad 3899 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
72 simpr 485 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
7371, 72, 60sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
7462ad5antlr 732 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
75 simpr 485 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
7665ad5antlr 732 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
7774, 75, 76negn0nposznnd 40310 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
7873, 77ifclda 4494 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
7920ad5antlr 732 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
80 simpr 485 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
8123ad5antlr 732 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
8279, 80, 81negn0nposznnd 40310 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑏 ∈ ℕ)
8378, 82ifclda 4494 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) ∈ ℕ)
8469, 83ifclda 4494 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) ∈ ℕ)
8552, 84ifcld 4505 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) ∈ ℕ)
86 simpllr 773 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ (ℤ ∖ {0}))
8786eldifad 3899 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℤ)
8886, 62syl 17 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ≠ 0)
89 nnabscl 15037 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑐 ≠ 0) → (abs‘𝑐) ∈ ℕ)
9087, 88, 89syl2anc 584 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℕ)
91 simp-5r 783 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
9291eldifad 3899 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℤ)
93 simp-7r 787 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
9493eldifad 3899 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
9594zred 12426 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℝ)
96 eluzge3nn 12630 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℕ)
9796ad7antr 735 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ)
9897nnnn0d 12293 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ0)
9995, 98reexpcld 13881 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
100 simp-6r 785 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
101100eldifad 3899 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
102101zred 12426 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℝ)
103102, 98reexpcld 13881 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
104 simplr 766 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
105 simpllr 773 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
10695, 97, 105oexpreposd 40321 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
107104, 106mpbid 231 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑎𝑛))
108 simpr 485 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
109102, 97, 105oexpreposd 40321 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
110108, 109mpbid 231 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑏𝑛))
11199, 103, 107, 110addgt0d 11550 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < ((𝑎𝑛) + (𝑏𝑛)))
112 simp-4r 781 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
113111, 112breqtrd 5100 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑐𝑛))
11492zred 12426 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℝ)
115114, 97, 105oexpreposd 40321 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
116113, 115mpbird 256 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑐)
11792, 116, 60sylanbrc 583 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℕ)
118 simp-8r 789 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
119118eldifad 3899 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
120 simpllr 773 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑎)
121119, 120, 18sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℕ)
122 simp-7r 787 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
123122, 20syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ≠ 0)
124 simplr 766 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑏)
125122eldifad 3899 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
126123, 124, 125negn0nposznnd 40310 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑏 ∈ ℕ)
127121, 126ifclda 4494 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑎, -𝑏) ∈ ℕ)
128117, 127ifclda 4494 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) ∈ ℕ)
129 simp-7r 787 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
130129eldifad 3899 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
131 simplr 766 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑏)
132130, 131, 39sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℕ)
133 simp-8r 789 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
134133, 11syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ≠ 0)
135 simpllr 773 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑎)
136133eldifad 3899 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
137134, 135, 136negn0nposznnd 40310 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑎 ∈ ℕ)
138132, 137ifclda 4494 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑏, -𝑎) ∈ ℕ)
139 simp-5r 783 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
140139, 62syl 17 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ≠ 0)
141 simp-7r 787 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
142141eldifad 3899 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
143142zred 12426 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℝ)
14496ad7antr 735 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ)
145144nnnn0d 12293 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ0)
146143, 145reexpcld 13881 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
147 simp-6r 785 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
148147eldifad 3899 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
149148zred 12426 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℝ)
150149, 145reexpcld 13881 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
151146, 150readdcld 11004 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) ∈ ℝ)
152 0red 10978 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 0 ∈ ℝ)
15311neneqd 2948 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℤ ∖ {0}) → ¬ 𝑎 = 0)
154141, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 𝑎 = 0)
155 zcn 12324 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
156141, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℂ)
157 expeq0 13813 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
158156, 144, 157syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
159154, 158mtbird 325 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑎𝑛) = 0)
160 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
161 simpllr 773 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
162143, 144, 161oexpreposd 40321 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
163160, 162mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑎𝑛))
164 ioran 981 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)) ↔ (¬ (𝑎𝑛) = 0 ∧ ¬ 0 < (𝑎𝑛)))
165159, 163, 164sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)))
166146, 152lttrid 11113 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) < 0 ↔ ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛))))
167165, 166mpbird 256 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) < 0)
168 zcn 12324 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
169147, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℂ)
170147, 20syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
171 eluzelz 12592 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℤ)
172171ad7antr 735 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℤ)
173169, 170, 172expne0d 13870 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ≠ 0)
174173neneqd 2948 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑏𝑛) = 0)
175 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
176149, 144, 161oexpreposd 40321 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
177175, 176mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑏𝑛))
178 ioran 981 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)) ↔ (¬ (𝑏𝑛) = 0 ∧ ¬ 0 < (𝑏𝑛)))
179174, 177, 178sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)))
180150, 152lttrid 11113 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑏𝑛) < 0 ↔ ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛))))
181179, 180mpbird 256 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) < 0)
182146, 150, 152, 152, 167, 181lt2addd 11598 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < (0 + 0))
183 00id 11150 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
184182, 183breqtrdi 5115 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < 0)
185151, 152, 184ltnsymd 11124 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < ((𝑎𝑛) + (𝑏𝑛)))
186 simp-4r 781 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
187186eqcomd 2744 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
188187breq2d 5086 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < (𝑐𝑛) ↔ 0 < ((𝑎𝑛) + (𝑏𝑛))))
189185, 188mtbird 325 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑐𝑛))
190139eldifad 3899 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℤ)
191190zred 12426 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℝ)
192191, 144, 161oexpreposd 40321 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
193189, 192mtbird 325 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑐)
194140, 193, 190negn0nposznnd 40310 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑐 ∈ ℕ)
195138, 194ifclda 4494 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) ∈ ℕ)
196128, 195ifclda 4494 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) ∈ ℕ)
19790, 196ifclda 4494 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) ∈ ℕ)
198 simplr 766 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
199 simp-5r 783 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ (ℤ ∖ {0}))
200199eldifad 3899 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℤ)
201200zred 12426 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℝ)
202 absresq 15014 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → ((abs‘𝑎)↑2) = (𝑎↑2))
203201, 202syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑2) = (𝑎↑2))
204203oveq1d 7290 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑2)↑(𝑛 / 2)) = ((𝑎↑2)↑(𝑛 / 2)))
205199, 10, 1553syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℂ)
206205abscld 15148 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℝ)
207206recnd 11003 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℂ)
208 simpr 485 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ)
209208nnnn0d 12293 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ0)
210 2nn0 12250 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
211210a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℕ0)
212207, 209, 211expmuld 13867 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (((abs‘𝑎)↑2)↑(𝑛 / 2)))
213205, 209, 211expmuld 13867 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎↑(2 · (𝑛 / 2))) = ((𝑎↑2)↑(𝑛 / 2)))
214204, 212, 2133eqtr4d 2788 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (𝑎↑(2 · (𝑛 / 2))))
215 simp-5l 782 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ (ℤ‘3))
216 nncn 11981 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
217215, 96, 2163syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ ℂ)
218 2cnd 12051 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℂ)
219 2ne0 12077 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
220219a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ≠ 0)
221217, 218, 220divcan2d 11753 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (2 · (𝑛 / 2)) = 𝑛)
222221eqcomd 2744 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 = (2 · (𝑛 / 2)))
223222oveq2d 7291 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = ((abs‘𝑎)↑(2 · (𝑛 / 2))))
224222oveq2d 7291 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎𝑛) = (𝑎↑(2 · (𝑛 / 2))))
225214, 223, 2243eqtr4d 2788 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = (𝑎𝑛))
226 simp-4r 781 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ (ℤ ∖ {0}))
227226eldifad 3899 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℤ)
228227zred 12426 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℝ)
229 absresq 15014 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → ((abs‘𝑏)↑2) = (𝑏↑2))
230228, 229syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑2) = (𝑏↑2))
231230oveq1d 7290 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑏)↑2)↑(𝑛 / 2)) = ((𝑏↑2)↑(𝑛 / 2)))
232226, 23, 1683syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℂ)
233232abscld 15148 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℝ)
234233recnd 11003 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℂ)
235234, 209, 211expmuld 13867 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (((abs‘𝑏)↑2)↑(𝑛 / 2)))
236232, 209, 211expmuld 13867 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏↑(2 · (𝑛 / 2))) = ((𝑏↑2)↑(𝑛 / 2)))
237231, 235, 2363eqtr4d 2788 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (𝑏↑(2 · (𝑛 / 2))))
238222oveq2d 7291 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = ((abs‘𝑏)↑(2 · (𝑛 / 2))))
239222oveq2d 7291 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏𝑛) = (𝑏↑(2 · (𝑛 / 2))))
240237, 238, 2393eqtr4d 2788 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = (𝑏𝑛))
241225, 240oveq12d 7293 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
24287zred 12426 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℝ)
243 absresq 15014 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ → ((abs‘𝑐)↑2) = (𝑐↑2))
244242, 243syl 17 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑2) = (𝑐↑2))
245244oveq1d 7290 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑐)↑2)↑(𝑛 / 2)) = ((𝑐↑2)↑(𝑛 / 2)))
246 zcn 12324 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℤ → 𝑐 ∈ ℂ)
24786, 65, 2463syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℂ)
248247abscld 15148 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℝ)
249248recnd 11003 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℂ)
250249, 209, 211expmuld 13867 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (((abs‘𝑐)↑2)↑(𝑛 / 2)))
251247, 209, 211expmuld 13867 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐↑(2 · (𝑛 / 2))) = ((𝑐↑2)↑(𝑛 / 2)))
252245, 250, 2513eqtr4d 2788 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (𝑐↑(2 · (𝑛 / 2))))
253222oveq2d 7291 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = ((abs‘𝑐)↑(2 · (𝑛 / 2))))
254222oveq2d 7291 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐𝑛) = (𝑐↑(2 · (𝑛 / 2))))
255252, 253, 2543eqtr4d 2788 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = (𝑐𝑛))
256198, 241, 2553eqtr4d 2788 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((abs‘𝑐)↑𝑛))
257 iftrue 4465 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = (abs‘𝑎))
258257oveq1d 7290 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = ((abs‘𝑎)↑𝑛))
259 iftrue 4465 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = (abs‘𝑏))
260259oveq1d 7290 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = ((abs‘𝑏)↑𝑛))
261258, 260oveq12d 7293 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
262261adantl 482 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
263 iftrue 4465 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = (abs‘𝑐))
264263oveq1d 7290 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
265264adantl 482 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
266256, 262, 2653eqtr4d 2788 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
267 iftrue 4465 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = 𝑎)
268267oveq1d 7290 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (𝑎𝑛))
269 iftrue 4465 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = 𝑏)
270269oveq1d 7290 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (𝑏𝑛))
271268, 270oveq12d 7293 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
272271adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
273 iftrue 4465 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = 𝑐)
274273oveq1d 7290 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
275274adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
276112, 272, 2753eqtr4d 2788 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
277 simp-7r 787 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
278277, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
279 simp-8l 788 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
280279, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
281 simp-4r 781 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
282 2nn 12046 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
283 nndivdvds 15972 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
284280, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
285281, 284mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
286 oexpneg 16054 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑏𝑛) = -(𝑏𝑛))
287278, 280, 285, 286syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
288287oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (-(𝑏𝑛) + (𝑐𝑛)))
289 nnnn0 12240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
290279, 96, 2893syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
291278, 290expcld 13864 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
292291negcld 11319 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
293 simp-6r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
294293, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
295294, 290expcld 13864 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
296292, 295addcomd 11177 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
297295, 291negsubd 11338 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
298296, 297eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
299118, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
300299, 290expcld 13864 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
301 simp-5r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
302301eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
303300, 291, 302mvrraddd 11387 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
304288, 298, 3033eqtrd 2782 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
305 iftrue 4465 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = -𝑏)
306305oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (-𝑏𝑛))
307 iftrue 4465 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = 𝑐)
308307oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (𝑐𝑛))
309306, 308oveq12d 7293 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
310309adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
311 iftrue 4465 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = 𝑎)
312311oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
313312adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
314304, 310, 3133eqtr4d 2788 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
315 simp-8r 789 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
316315, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
31796ad8antr 737 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
318317nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
319316, 318expcld 13864 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
320 simp-6r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
321320, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
322321, 318expcld 13864 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
323319, 322negsubd 11338 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = ((𝑎𝑛) − (𝑐𝑛)))
324319, 322subcld 11332 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) ∈ ℂ)
325122, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
326325, 318expcld 13864 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
327326negcld 11319 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
328 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
329319, 326, 328mvlraddd 11385 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) = ((𝑐𝑛) − (𝑏𝑛)))
330322, 319pncan3d 11335 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = (𝑎𝑛))
331322, 326negsubd 11338 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
332329, 330, 3313eqtr4d 2788 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = ((𝑐𝑛) + -(𝑏𝑛)))
333322, 324, 327, 332addcanad 11180 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) = -(𝑏𝑛))
334323, 333eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = -(𝑏𝑛))
335 simp-4r 781 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
336317, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
337335, 336mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
338 oexpneg 16054 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑐𝑛) = -(𝑐𝑛))
339321, 317, 337, 338syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
340339oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = ((𝑎𝑛) + -(𝑐𝑛)))
341325, 317, 337, 286syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
342334, 340, 3413eqtr4d 2788 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = (-𝑏𝑛))
343 iffalse 4468 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = 𝑎)
344343oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (𝑎𝑛))
345 iffalse 4468 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = -𝑐)
346345oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (-𝑐𝑛))
347344, 346oveq12d 7293 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
348347adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
349 iffalse 4468 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = -𝑏)
350349oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
351350adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
352342, 348, 3513eqtr4d 2788 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
353314, 352pm2.61dan 810 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
354 iffalse 4468 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = if(0 < 𝑐, -𝑏, 𝑎))
355354oveq1d 7290 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛))
356 iffalse 4468 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = if(0 < 𝑐, 𝑐, -𝑐))
357356oveq1d 7290 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
358355, 357oveq12d 7293 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
359358adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
360 iffalse 4468 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = if(0 < 𝑐, 𝑎, -𝑏))
361360oveq1d 7290 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
362361adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
363353, 359, 3623eqtr4d 2788 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
364276, 363pm2.61dan 810 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
365 iftrue 4465 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)))
366365oveq1d 7290 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛))
367 iftrue 4465 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)))
368367oveq1d 7290 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛))
369366, 368oveq12d 7293 . . . . . . . . . . . . . 14 (0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
370369adantl 482 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
371 iftrue 4465 . . . . . . . . . . . . . . 15 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)))
372371oveq1d 7290 . . . . . . . . . . . . . 14 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
373372adantl 482 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
374364, 370, 3733eqtr4d 2788 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
375 simp-8r 789 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
376375, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
37796ad8antr 737 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
378 simp-4r 781 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
379377, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
380378, 379mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
381 oexpneg 16054 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑎𝑛) = -(𝑎𝑛))
382376, 377, 380, 381syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
383382oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (-(𝑎𝑛) + (𝑐𝑛)))
384377nnnn0d 12293 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
385376, 384expcld 13864 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
386385negcld 11319 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑎𝑛) ∈ ℂ)
387 simp-6r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
388387, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
389388, 384expcld 13864 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
390386, 389addcld 10994 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) ∈ ℂ)
391129, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
392391, 384expcld 13864 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
393385negidd 11322 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + -(𝑎𝑛)) = 0)
394393oveq1d 7290 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = (0 + (𝑐𝑛)))
395385, 386, 389addassd 10997 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))))
396389addid2d 11176 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (0 + (𝑐𝑛)) = (𝑐𝑛))
397394, 395, 3963eqtr3d 2786 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = (𝑐𝑛))
398 simp-5r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
399397, 398eqtr4d 2781 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = ((𝑎𝑛) + (𝑏𝑛)))
400385, 390, 392, 399addcanad 11180 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
401383, 400eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
402 iftrue 4465 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = -𝑎)
403402oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (-𝑎𝑛))
404403, 308oveq12d 7293 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
405404adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
406 iftrue 4465 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = 𝑏)
407406oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
408407adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
409401, 405, 4083eqtr4d 2788 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
410 simp-7r 787 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
411410, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
412 simp-8l 788 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
413412, 96, 2893syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
414411, 413expcld 13864 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
415414negcld 11319 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
416 simp-6r 785 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
417416, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
418417, 413expcld 13864 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
419415, 418addcomd 11177 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
420418, 414negsubd 11338 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
421 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
422421oveq1d 7290 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
423133, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
424423, 413expcld 13864 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
425424, 414pncand 11333 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = (𝑎𝑛))
426422, 425eqtr3d 2780 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
427419, 420, 4263eqtrd 2782 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
428427negeqd 11215 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = -(𝑎𝑛))
429414negnegd 11323 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → --(𝑏𝑛) = (𝑏𝑛))
430429eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) = --(𝑏𝑛))
431430oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + -(𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
432412, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
433 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
434432, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
435433, 434mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
436417, 432, 435, 338syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
437436oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = ((𝑏𝑛) + -(𝑐𝑛)))
438415, 418negdid 11345 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
439431, 437, 4383eqtr4d 2788 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = -(-(𝑏𝑛) + (𝑐𝑛)))
440423, 432, 435, 381syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
441428, 439, 4403eqtr4d 2788 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = (-𝑎𝑛))
442 iffalse 4468 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = 𝑏)
443442oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (𝑏𝑛))
444443, 346oveq12d 7293 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
445444adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
446 iffalse 4468 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = -𝑎)
447446oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
448447adantl 482 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
449441, 445, 4483eqtr4d 2788 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
450409, 449pm2.61dan 810 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
451 iftrue 4465 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = if(0 < 𝑐, -𝑎, 𝑏))
452451oveq1d 7290 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛))
453 iftrue 4465 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = if(0 < 𝑐, 𝑐, -𝑐))
454453oveq1d 7290 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
455452, 454oveq12d 7293 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
456455adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
457 iftrue 4465 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = if(0 < 𝑐, 𝑏, -𝑎))
458457oveq1d 7290 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
459458adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
460450, 456, 4593eqtr4d 2788 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
461186negeqd 11215 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = -(𝑐𝑛))
462144, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
463161, 462mtbird 325 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 2 ∥ 𝑛)
464156, 144, 463, 381syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑎𝑛) = -(𝑎𝑛))
465169, 144, 463, 286syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑏𝑛) = -(𝑏𝑛))
466464, 465oveq12d 7293 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
467141, 11syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
468156, 467, 172expclzd 13869 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℂ)
469169, 170, 172expclzd 13869 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℂ)
470468, 469negdid 11345 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
471466, 470eqtr4d 2781 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = -((𝑎𝑛) + (𝑏𝑛)))
472139, 65, 2463syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℂ)
473472, 144, 463, 338syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑐𝑛) = -(𝑐𝑛))
474461, 471, 4733eqtr4d 2788 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-𝑐𝑛))
475 iffalse 4468 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = -𝑎)
476475oveq1d 7290 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (-𝑎𝑛))
477 iffalse 4468 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = -𝑏)
478477oveq1d 7290 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (-𝑏𝑛))
479476, 478oveq12d 7293 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
480479adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
481 iffalse 4468 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = -𝑐)
482481oveq1d 7290 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
483482adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
484474, 480, 4833eqtr4d 2788 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
485460, 484pm2.61dan 810 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
486 iffalse 4468 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))
487486oveq1d 7290 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛))
488 iffalse 4468 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))
489488oveq1d 7290 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛))
490487, 489oveq12d 7293 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
491490adantl 482 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
492 iffalse 4468 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))
493492oveq1d 7290 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
494493adantl 482 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
495485, 491, 4943eqtr4d 2788 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
496374, 495pm2.61dan 810 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
497 iffalse 4468 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))
498497oveq1d 7290 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛))
499 iffalse 4468 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))
500499oveq1d 7290 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛))
501498, 500oveq12d 7293 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
502501adantl 482 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
503 iffalse 4468 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))
504503oveq1d 7290 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
505504adantl 482 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
506496, 502, 5053eqtr4d 2788 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
507266, 506pm2.61dan 810 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
5083, 6, 8, 48, 85, 197, 5073rspcedvdw 40181 . . . . . . . 8 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
509508rexlimdva2 3216 . . . . . . 7 (((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) → (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
510509rexlimdva 3213 . . . . . 6 ((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) → (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
511510rexlimdva 3213 . . . . 5 (𝑛 ∈ (ℤ‘3) → (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
512511reximia 3176 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
513 nne 2947 . . . . . . . . . . . . 13 (¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
514513bicomi 223 . . . . . . . . . . . 12 (((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
515514rexbii 3181 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
516 rexnal 3169 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
517515, 516bitri 274 . . . . . . . . . 10 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
518517rexbii 3181 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
519 rexnal 3169 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
520518, 519bitri 274 . . . . . . . 8 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
521520rexbii 3181 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
522 rexnal 3169 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
523521, 522bitri 274 . . . . . 6 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
524523rexbii 3181 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
525 rexnal 3169 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
526524, 525bitri 274 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
527 nne 2947 . . . . . . . . . . . . 13 (¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
528527bicomi 223 . . . . . . . . . . . 12 (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
529528rexbii 3181 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
530 rexnal 3169 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
531529, 530bitri 274 . . . . . . . . . 10 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
532531rexbii 3181 . . . . . . . . 9 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
533 rexnal 3169 . . . . . . . . 9 (∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
534532, 533bitri 274 . . . . . . . 8 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
535534rexbii 3181 . . . . . . 7 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
536 rexnal 3169 . . . . . . 7 (∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
537535, 536bitri 274 . . . . . 6 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
538537rexbii 3181 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
539 rexnal 3169 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
540538, 539bitri 274 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
541512, 526, 5403imtr3i 291 . . 3 (¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
542541con4i 114 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
543 dfn2 12246 . . . . . 6 ℕ = (ℕ0 ∖ {0})
544 nn0ssz 12341 . . . . . . 7 0 ⊆ ℤ
545 ssdif 4074 . . . . . . 7 (ℕ0 ⊆ ℤ → (ℕ0 ∖ {0}) ⊆ (ℤ ∖ {0}))
546544, 545ax-mp 5 . . . . . 6 (ℕ0 ∖ {0}) ⊆ (ℤ ∖ {0})
547543, 546eqsstri 3955 . . . . 5 ℕ ⊆ (ℤ ∖ {0})
548 ssel 3914 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ ∖ {0})))
549 ss2ralv 3989 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
550548, 549imim12d 81 . . . . . 6 (ℕ ⊆ (ℤ ∖ {0}) → ((𝑎 ∈ (ℤ ∖ {0}) → ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)) → (𝑎 ∈ ℕ → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))))
551550ralimdv2 3107 . . . . 5 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
552547, 551ax-mp 5 . . . 4 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
553 oveq1 7282 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑛) = (𝑥𝑛))
554553oveq1d 7290 . . . . . 6 (𝑎 = 𝑥 → ((𝑎𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑏𝑛)))
555554neeq1d 3003 . . . . 5 (𝑎 = 𝑥 → (((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
556 oveq1 7282 . . . . . . 7 (𝑏 = 𝑦 → (𝑏𝑛) = (𝑦𝑛))
557556oveq2d 7291 . . . . . 6 (𝑏 = 𝑦 → ((𝑥𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑦𝑛)))
558557neeq1d 3003 . . . . 5 (𝑏 = 𝑦 → (((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛)))
559 oveq1 7282 . . . . . 6 (𝑐 = 𝑧 → (𝑐𝑛) = (𝑧𝑛))
560559neeq2d 3004 . . . . 5 (𝑐 = 𝑧 → (((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛)))
561555, 558, 560cbvral3vw 3398 . . . 4 (∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
562552, 561sylib 217 . . 3 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
563562ralimi 3087 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
564542, 563impbii 208 1 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  0cn0 12233  cz 12319  cuz 12582  cexp 13782  abscabs 14945  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator