Proof of Theorem dffltz
Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (𝑥↑𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛)) |
2 | 1 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → ((𝑥↑𝑛) + (𝑦↑𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦↑𝑛))) |
3 | 2 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛))) |
4 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (𝑦↑𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) |
5 | 4 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦↑𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛))) |
6 | 5 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧↑𝑛))) |
7 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (𝑧↑𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)) |
8 | 7 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧↑𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))) |
9 | | simp-4r 780 |
. . . . . . . . . . 11
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → 𝑎 ∈ (ℤ ∖
{0})) |
10 | | eldifi 4057 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℤ ∖ {0})
→ 𝑎 ∈
ℤ) |
11 | | eldifsni 4720 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℤ ∖ {0})
→ 𝑎 ≠
0) |
12 | 10, 11 | jca 511 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (ℤ ∖ {0})
→ (𝑎 ∈ ℤ
∧ 𝑎 ≠
0)) |
13 | | nnabscl 14965 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈
ℕ) |
14 | 9, 12, 13 | 3syl 18 |
. . . . . . . . . 10
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → (abs‘𝑎) ∈ ℕ) |
15 | | simp-6r 784 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖
{0})) |
16 | 15 | eldifad 3895 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ) |
17 | | simplr 765 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎) |
18 | | elnnz 12259 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 <
𝑎)) |
19 | 16, 17, 18 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℕ) |
20 | | eldifsni 4720 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (ℤ ∖ {0})
→ 𝑏 ≠
0) |
21 | 20 | ad6antlr 733 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ≠ 0) |
22 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑏) |
23 | | eldifi 4057 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (ℤ ∖ {0})
→ 𝑏 ∈
ℤ) |
24 | 23 | ad6antlr 733 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ) |
25 | 21, 22, 24 | negn0nposznnd 40231 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑏 ∈ ℕ) |
26 | | simp-7r 786 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖
{0})) |
27 | 26 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ) |
28 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑎) |
29 | 27, 28, 18 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℕ) |
30 | 25, 29 | ifclda 4491 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, -𝑏, 𝑎) ∈ ℕ) |
31 | 19, 30 | ifclda 4491 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) ∈ ℕ) |
32 | 11 | ad7antlr 735 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ≠ 0) |
33 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑎) |
34 | 10 | ad7antlr 735 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ) |
35 | 32, 33, 34 | negn0nposznnd 40231 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑎 ∈ ℕ) |
36 | | simp-6r 784 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖
{0})) |
37 | 36 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ) |
38 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑏) |
39 | | elnnz 12259 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 <
𝑏)) |
40 | 37, 38, 39 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℕ) |
41 | 35, 40 | ifclda 4491 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, -𝑎, 𝑏) ∈ ℕ) |
42 | 11 | ad6antlr 733 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0) |
43 | | simplr 765 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎) |
44 | 10 | ad6antlr 733 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ) |
45 | 42, 43, 44 | negn0nposznnd 40231 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑎 ∈ ℕ) |
46 | 41, 45 | ifclda 4491 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) ∈ ℕ) |
47 | 31, 46 | ifclda 4491 |
. . . . . . . . . 10
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) ∈ ℕ) |
48 | 14, 47 | ifcld 4502 |
. . . . . . . . 9
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) ∈ ℕ) |
49 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → 𝑏 ∈ (ℤ ∖
{0})) |
50 | 23, 20 | jca 511 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (ℤ ∖ {0})
→ (𝑏 ∈ ℤ
∧ 𝑏 ≠
0)) |
51 | | nnabscl 14965 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ℤ ∧ 𝑏 ≠ 0) → (abs‘𝑏) ∈
ℕ) |
52 | 49, 50, 51 | 3syl 18 |
. . . . . . . . . 10
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → (abs‘𝑏) ∈ ℕ) |
53 | | simp-5r 782 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖
{0})) |
54 | 53 | eldifad 3895 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ) |
55 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏) |
56 | 54, 55, 39 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℕ) |
57 | | simp-5r 782 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖
{0})) |
58 | 57 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ) |
59 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐) |
60 | | elnnz 12259 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ℕ ↔ (𝑐 ∈ ℤ ∧ 0 <
𝑐)) |
61 | 58, 59, 60 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ) |
62 | | eldifsni 4720 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ (ℤ ∖ {0})
→ 𝑐 ≠
0) |
63 | 62 | ad5antlr 731 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0) |
64 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐) |
65 | | eldifi 4057 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ (ℤ ∖ {0})
→ 𝑐 ∈
ℤ) |
66 | 65 | ad5antlr 731 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ) |
67 | 63, 64, 66 | negn0nposznnd 40231 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ) |
68 | 61, 67 | ifclda 4491 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ) |
69 | 56, 68 | ifclda 4491 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) ∈ ℕ) |
70 | | simp-5r 782 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖
{0})) |
71 | 70 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ) |
72 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐) |
73 | 71, 72, 60 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ) |
74 | 62 | ad5antlr 731 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0) |
75 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐) |
76 | 65 | ad5antlr 731 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ) |
77 | 74, 75, 76 | negn0nposznnd 40231 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ) |
78 | 73, 77 | ifclda 4491 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ) |
79 | 20 | ad5antlr 731 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0) |
80 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏) |
81 | 23 | ad5antlr 731 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ) |
82 | 79, 80, 81 | negn0nposznnd 40231 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑏 ∈ ℕ) |
83 | 78, 82 | ifclda 4491 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) ∈ ℕ) |
84 | 69, 83 | ifclda 4491 |
. . . . . . . . . 10
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) ∈ ℕ) |
85 | 52, 84 | ifcld 4502 |
. . . . . . . . 9
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) ∈ ℕ) |
86 | | simpllr 772 |
. . . . . . . . . . . 12
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ (ℤ ∖
{0})) |
87 | 86 | eldifad 3895 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈
ℤ) |
88 | 86, 62 | syl 17 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ≠ 0) |
89 | | nnabscl 14965 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ ℤ ∧ 𝑐 ≠ 0) → (abs‘𝑐) ∈
ℕ) |
90 | 87, 88, 89 | syl2anc 583 |
. . . . . . . . . 10
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈
ℕ) |
91 | | simp-5r 782 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖
{0})) |
92 | 91 | eldifad 3895 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℤ) |
93 | | simp-7r 786 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖
{0})) |
94 | 93 | eldifad 3895 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ) |
95 | 94 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℝ) |
96 | | eluzge3nn 12559 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈
(ℤ≥‘3) → 𝑛 ∈ ℕ) |
97 | 96 | ad7antr 734 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ) |
98 | 97 | nnnn0d 12223 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ0) |
99 | 95, 98 | reexpcld 13809 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑎↑𝑛) ∈ ℝ) |
100 | | simp-6r 784 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖
{0})) |
101 | 100 | eldifad 3895 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ) |
102 | 101 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℝ) |
103 | 102, 98 | reexpcld 13809 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑏↑𝑛) ∈ ℝ) |
104 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎) |
105 | | simpllr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ¬ (𝑛 / 2) ∈
ℕ) |
106 | 95, 97, 105 | oexpreposd 40242 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎↑𝑛))) |
107 | 104, 106 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑎↑𝑛)) |
108 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏) |
109 | 102, 97, 105 | oexpreposd 40242 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏↑𝑛))) |
110 | 108, 109 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑏↑𝑛)) |
111 | 99, 103, 107, 110 | addgt0d 11480 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < ((𝑎↑𝑛) + (𝑏↑𝑛))) |
112 | | simp-4r 780 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
113 | 111, 112 | breqtrd 5096 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑐↑𝑛)) |
114 | 92 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℝ) |
115 | 114, 97, 105 | oexpreposd 40242 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐↑𝑛))) |
116 | 113, 115 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑐) |
117 | 92, 116, 60 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℕ) |
118 | | simp-8r 788 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖
{0})) |
119 | 118 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ) |
120 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑎) |
121 | 119, 120,
18 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℕ) |
122 | | simp-7r 786 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖
{0})) |
123 | 122, 20 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ≠ 0) |
124 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑏) |
125 | 122 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ) |
126 | 123, 124,
125 | negn0nposznnd 40231 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑏 ∈ ℕ) |
127 | 121, 126 | ifclda 4491 |
. . . . . . . . . . . 12
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑎, -𝑏) ∈ ℕ) |
128 | 117, 127 | ifclda 4491 |
. . . . . . . . . . 11
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) ∈ ℕ) |
129 | | simp-7r 786 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖
{0})) |
130 | 129 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ) |
131 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑏) |
132 | 130, 131,
39 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℕ) |
133 | | simp-8r 788 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖
{0})) |
134 | 133, 11 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ≠ 0) |
135 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑎) |
136 | 133 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ) |
137 | 134, 135,
136 | negn0nposznnd 40231 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑎 ∈ ℕ) |
138 | 132, 137 | ifclda 4491 |
. . . . . . . . . . . 12
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑏, -𝑎) ∈ ℕ) |
139 | | simp-5r 782 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖
{0})) |
140 | 139, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ≠ 0) |
141 | | simp-7r 786 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖
{0})) |
142 | 141 | eldifad 3895 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ) |
143 | 142 | zred 12355 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℝ) |
144 | 96 | ad7antr 734 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ) |
145 | 144 | nnnn0d 12223 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ0) |
146 | 143, 145 | reexpcld 13809 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑎↑𝑛) ∈ ℝ) |
147 | | simp-6r 784 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖
{0})) |
148 | 147 | eldifad 3895 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ) |
149 | 148 | zred 12355 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℝ) |
150 | 149, 145 | reexpcld 13809 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑏↑𝑛) ∈ ℝ) |
151 | 146, 150 | readdcld 10935 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎↑𝑛) + (𝑏↑𝑛)) ∈ ℝ) |
152 | | 0red 10909 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 0 ∈
ℝ) |
153 | 11 | neneqd 2947 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (ℤ ∖ {0})
→ ¬ 𝑎 =
0) |
154 | 141, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 𝑎 = 0) |
155 | | zcn 12254 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
156 | 141, 10, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℂ) |
157 | | expeq0 13741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((𝑎↑𝑛) = 0 ↔ 𝑎 = 0)) |
158 | 156, 144,
157 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎↑𝑛) = 0 ↔ 𝑎 = 0)) |
159 | 154, 158 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑎↑𝑛) = 0) |
160 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎) |
161 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑛 / 2) ∈
ℕ) |
162 | 143, 144,
161 | oexpreposd 40242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎↑𝑛))) |
163 | 160, 162 | mtbid 323 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑎↑𝑛)) |
164 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((𝑎↑𝑛) = 0 ∨ 0 < (𝑎↑𝑛)) ↔ (¬ (𝑎↑𝑛) = 0 ∧ ¬ 0 < (𝑎↑𝑛))) |
165 | 159, 163,
164 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑎↑𝑛) = 0 ∨ 0 < (𝑎↑𝑛))) |
166 | 146, 152 | lttrid 11043 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎↑𝑛) < 0 ↔ ¬ ((𝑎↑𝑛) = 0 ∨ 0 < (𝑎↑𝑛)))) |
167 | 165, 166 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑎↑𝑛) < 0) |
168 | | zcn 12254 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℂ) |
169 | 147, 23, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℂ) |
170 | 147, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0) |
171 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈
(ℤ≥‘3) → 𝑛 ∈ ℤ) |
172 | 171 | ad7antr 734 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℤ) |
173 | 169, 170,
172 | expne0d 13798 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑏↑𝑛) ≠ 0) |
174 | 173 | neneqd 2947 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑏↑𝑛) = 0) |
175 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏) |
176 | 149, 144,
161 | oexpreposd 40242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏↑𝑛))) |
177 | 175, 176 | mtbid 323 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑏↑𝑛)) |
178 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((𝑏↑𝑛) = 0 ∨ 0 < (𝑏↑𝑛)) ↔ (¬ (𝑏↑𝑛) = 0 ∧ ¬ 0 < (𝑏↑𝑛))) |
179 | 174, 177,
178 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑏↑𝑛) = 0 ∨ 0 < (𝑏↑𝑛))) |
180 | 150, 152 | lttrid 11043 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑏↑𝑛) < 0 ↔ ¬ ((𝑏↑𝑛) = 0 ∨ 0 < (𝑏↑𝑛)))) |
181 | 179, 180 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑏↑𝑛) < 0) |
182 | 146, 150,
152, 152, 167, 181 | lt2addd 11528 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎↑𝑛) + (𝑏↑𝑛)) < (0 + 0)) |
183 | | 00id 11080 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + 0) =
0 |
184 | 182, 183 | breqtrdi 5111 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎↑𝑛) + (𝑏↑𝑛)) < 0) |
185 | 151, 152,
184 | ltnsymd 11054 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < ((𝑎↑𝑛) + (𝑏↑𝑛))) |
186 | | simp-4r 780 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
187 | 186 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑐↑𝑛) = ((𝑎↑𝑛) + (𝑏↑𝑛))) |
188 | 187 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (0 < (𝑐↑𝑛) ↔ 0 < ((𝑎↑𝑛) + (𝑏↑𝑛)))) |
189 | 185, 188 | mtbird 324 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑐↑𝑛)) |
190 | 139 | eldifad 3895 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℤ) |
191 | 190 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℝ) |
192 | 191, 144,
161 | oexpreposd 40242 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐↑𝑛))) |
193 | 189, 192 | mtbird 324 |
. . . . . . . . . . . . 13
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑐) |
194 | 140, 193,
190 | negn0nposznnd 40231 |
. . . . . . . . . . . 12
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → -𝑐 ∈ ℕ) |
195 | 138, 194 | ifclda 4491 |
. . . . . . . . . . 11
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) ∈ ℕ) |
196 | 128, 195 | ifclda 4491 |
. . . . . . . . . 10
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) ∈ ℕ) |
197 | 90, 196 | ifclda 4491 |
. . . . . . . . 9
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) ∈ ℕ) |
198 | | simplr 765 |
. . . . . . . . . . . 12
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
199 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ (ℤ ∖
{0})) |
200 | 199 | eldifad 3895 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈
ℤ) |
201 | 200 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈
ℝ) |
202 | | absresq 14942 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℝ →
((abs‘𝑎)↑2) =
(𝑎↑2)) |
203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑎)↑2) =
(𝑎↑2)) |
204 | 203 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
(((abs‘𝑎)↑2)↑(𝑛 / 2)) = ((𝑎↑2)↑(𝑛 / 2))) |
205 | 199, 10, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈
ℂ) |
206 | 205 | abscld 15076 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈
ℝ) |
207 | 206 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈
ℂ) |
208 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈
ℕ) |
209 | 208 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈
ℕ0) |
210 | | 2nn0 12180 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ0 |
211 | 210 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈
ℕ0) |
212 | 207, 209,
211 | expmuld 13795 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑎)↑(2
· (𝑛 / 2))) =
(((abs‘𝑎)↑2)↑(𝑛 / 2))) |
213 | 205, 209,
211 | expmuld 13795 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎↑(2 · (𝑛 / 2))) = ((𝑎↑2)↑(𝑛 / 2))) |
214 | 204, 212,
213 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑎)↑(2
· (𝑛 / 2))) = (𝑎↑(2 · (𝑛 / 2)))) |
215 | | simp-5l 781 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈
(ℤ≥‘3)) |
216 | | nncn 11911 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
217 | 215, 96, 216 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈
ℂ) |
218 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈
ℂ) |
219 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
220 | 219 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ≠
0) |
221 | 217, 218,
220 | divcan2d 11683 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (2 ·
(𝑛 / 2)) = 𝑛) |
222 | 221 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 = (2 · (𝑛 / 2))) |
223 | 222 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑎)↑𝑛) = ((abs‘𝑎)↑(2 · (𝑛 / 2)))) |
224 | 222 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎↑𝑛) = (𝑎↑(2 · (𝑛 / 2)))) |
225 | 214, 223,
224 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑎)↑𝑛) = (𝑎↑𝑛)) |
226 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ (ℤ ∖
{0})) |
227 | 226 | eldifad 3895 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈
ℤ) |
228 | 227 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈
ℝ) |
229 | | absresq 14942 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ ℝ →
((abs‘𝑏)↑2) =
(𝑏↑2)) |
230 | 228, 229 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑏)↑2) =
(𝑏↑2)) |
231 | 230 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
(((abs‘𝑏)↑2)↑(𝑛 / 2)) = ((𝑏↑2)↑(𝑛 / 2))) |
232 | 226, 23, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈
ℂ) |
233 | 232 | abscld 15076 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈
ℝ) |
234 | 233 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈
ℂ) |
235 | 234, 209,
211 | expmuld 13795 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑏)↑(2
· (𝑛 / 2))) =
(((abs‘𝑏)↑2)↑(𝑛 / 2))) |
236 | 232, 209,
211 | expmuld 13795 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏↑(2 · (𝑛 / 2))) = ((𝑏↑2)↑(𝑛 / 2))) |
237 | 231, 235,
236 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑏)↑(2
· (𝑛 / 2))) = (𝑏↑(2 · (𝑛 / 2)))) |
238 | 222 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑏)↑𝑛) = ((abs‘𝑏)↑(2 · (𝑛 / 2)))) |
239 | 222 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏↑𝑛) = (𝑏↑(2 · (𝑛 / 2)))) |
240 | 237, 238,
239 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑏)↑𝑛) = (𝑏↑𝑛)) |
241 | 225, 240 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
(((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((𝑎↑𝑛) + (𝑏↑𝑛))) |
242 | 87 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈
ℝ) |
243 | | absresq 14942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ℝ →
((abs‘𝑐)↑2) =
(𝑐↑2)) |
244 | 242, 243 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑐)↑2) =
(𝑐↑2)) |
245 | 244 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
(((abs‘𝑐)↑2)↑(𝑛 / 2)) = ((𝑐↑2)↑(𝑛 / 2))) |
246 | | zcn 12254 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ℤ → 𝑐 ∈
ℂ) |
247 | 86, 65, 246 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈
ℂ) |
248 | 247 | abscld 15076 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈
ℝ) |
249 | 248 | recnd 10934 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈
ℂ) |
250 | 249, 209,
211 | expmuld 13795 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑐)↑(2
· (𝑛 / 2))) =
(((abs‘𝑐)↑2)↑(𝑛 / 2))) |
251 | 247, 209,
211 | expmuld 13795 |
. . . . . . . . . . . . . 14
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐↑(2 · (𝑛 / 2))) = ((𝑐↑2)↑(𝑛 / 2))) |
252 | 245, 250,
251 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑐)↑(2
· (𝑛 / 2))) = (𝑐↑(2 · (𝑛 / 2)))) |
253 | 222 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑐)↑𝑛) = ((abs‘𝑐)↑(2 · (𝑛 / 2)))) |
254 | 222 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐↑𝑛) = (𝑐↑(2 · (𝑛 / 2)))) |
255 | 252, 253,
254 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
((abs‘𝑐)↑𝑛) = (𝑐↑𝑛)) |
256 | 198, 241,
255 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) →
(((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((abs‘𝑐)↑𝑛)) |
257 | | iftrue 4462 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 / 2) ∈ ℕ →
if((𝑛 / 2) ∈ ℕ,
(abs‘𝑎), if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = (abs‘𝑎)) |
258 | 257 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 / 2) ∈ ℕ →
(if((𝑛 / 2) ∈ ℕ,
(abs‘𝑎), if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = ((abs‘𝑎)↑𝑛)) |
259 | | iftrue 4462 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 / 2) ∈ ℕ →
if((𝑛 / 2) ∈ ℕ,
(abs‘𝑏), if(0 <
𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = (abs‘𝑏)) |
260 | 259 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑛 / 2) ∈ ℕ →
(if((𝑛 / 2) ∈ ℕ,
(abs‘𝑏), if(0 <
𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = ((abs‘𝑏)↑𝑛)) |
261 | 258, 260 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑛 / 2) ∈ ℕ →
((if((𝑛 / 2) ∈
ℕ, (abs‘𝑎),
if(0 < 𝑎, if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛))) |
262 | 261 | adantl 481 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ,
(abs‘𝑎), if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛))) |
263 | | iftrue 4462 |
. . . . . . . . . . . . 13
⊢ ((𝑛 / 2) ∈ ℕ →
if((𝑛 / 2) ∈ ℕ,
(abs‘𝑐), if(0 <
𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = (abs‘𝑐)) |
264 | 263 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((𝑛 / 2) ∈ ℕ →
(if((𝑛 / 2) ∈ ℕ,
(abs‘𝑐), if(0 <
𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛)) |
265 | 264 | adantl 481 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ,
(abs‘𝑐), if(0 <
𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛)) |
266 | 256, 262,
265 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ,
(abs‘𝑎), if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)) |
267 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = 𝑎) |
268 | 267 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (0 <
𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (𝑎↑𝑛)) |
269 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = 𝑏) |
270 | 269 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (0 <
𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (𝑏↑𝑛)) |
271 | 268, 270 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (0 <
𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎↑𝑛) + (𝑏↑𝑛))) |
272 | 271 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎↑𝑛) + (𝑏↑𝑛))) |
273 | | iftrue 4462 |
. . . . . . . . . . . . . . . . 17
⊢ (0 <
𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = 𝑐) |
274 | 273 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (0 <
𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐↑𝑛)) |
275 | 274 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐↑𝑛)) |
276 | 112, 272,
275 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛)) |
277 | | simp-7r 786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖
{0})) |
278 | 277, 23, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ) |
279 | | simp-8l 787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈
(ℤ≥‘3)) |
280 | 279, 96 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ) |
281 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈
ℕ) |
282 | | 2nn 11976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ |
283 | | nndivdvds 15900 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ℕ ∧ 2 ∈
ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ)) |
284 | 280, 282,
283 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ)) |
285 | 281, 284 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛) |
286 | | oexpneg 15982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2
∥ 𝑛) → (-𝑏↑𝑛) = -(𝑏↑𝑛)) |
287 | 278, 280,
285, 286 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑏↑𝑛) = -(𝑏↑𝑛)) |
288 | 287 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏↑𝑛) + (𝑐↑𝑛)) = (-(𝑏↑𝑛) + (𝑐↑𝑛))) |
289 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
290 | 279, 96, 289 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0) |
291 | 278, 290 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏↑𝑛) ∈ ℂ) |
292 | 291 | negcld 11249 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑏↑𝑛) ∈ ℂ) |
293 | | simp-6r 784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖
{0})) |
294 | 293, 65, 246 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ) |
295 | 294, 290 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐↑𝑛) ∈ ℂ) |
296 | 292, 295 | addcomd 11107 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏↑𝑛) + (𝑐↑𝑛)) = ((𝑐↑𝑛) + -(𝑏↑𝑛))) |
297 | 295, 291 | negsubd 11268 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐↑𝑛) + -(𝑏↑𝑛)) = ((𝑐↑𝑛) − (𝑏↑𝑛))) |
298 | 296, 297 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏↑𝑛) + (𝑐↑𝑛)) = ((𝑐↑𝑛) − (𝑏↑𝑛))) |
299 | 118, 10, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ) |
300 | 299, 290 | expcld 13792 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎↑𝑛) ∈ ℂ) |
301 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
302 | 301 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐↑𝑛) = ((𝑎↑𝑛) + (𝑏↑𝑛))) |
303 | 300, 291,
302 | mvrraddd 11317 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐↑𝑛) − (𝑏↑𝑛)) = (𝑎↑𝑛)) |
304 | 288, 298,
303 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏↑𝑛) + (𝑐↑𝑛)) = (𝑎↑𝑛)) |
305 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 <
𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = -𝑏) |
306 | 305 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 <
𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (-𝑏↑𝑛)) |
307 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 <
𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = 𝑐) |
308 | 307 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 <
𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (𝑐↑𝑛)) |
309 | 306, 308 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏↑𝑛) + (𝑐↑𝑛))) |
310 | 309 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏↑𝑛) + (𝑐↑𝑛))) |
311 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 <
𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = 𝑎) |
312 | 311 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎↑𝑛)) |
313 | 312 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎↑𝑛)) |
314 | 304, 310,
313 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛)) |
315 | | simp-8r 788 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖
{0})) |
316 | 315, 10, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ) |
317 | 96 | ad8antr 736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ) |
318 | 317 | nnnn0d 12223 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0) |
319 | 316, 318 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎↑𝑛) ∈ ℂ) |
320 | | simp-6r 784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖
{0})) |
321 | 320, 65, 246 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ) |
322 | 321, 318 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐↑𝑛) ∈ ℂ) |
323 | 319, 322 | negsubd 11268 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) + -(𝑐↑𝑛)) = ((𝑎↑𝑛) − (𝑐↑𝑛))) |
324 | 319, 322 | subcld 11262 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) − (𝑐↑𝑛)) ∈ ℂ) |
325 | 122, 23, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ) |
326 | 325, 318 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏↑𝑛) ∈ ℂ) |
327 | 326 | negcld 11249 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏↑𝑛) ∈ ℂ) |
328 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
329 | 319, 326,
328 | mvlraddd 11315 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎↑𝑛) = ((𝑐↑𝑛) − (𝑏↑𝑛))) |
330 | 322, 319 | pncan3d 11265 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐↑𝑛) + ((𝑎↑𝑛) − (𝑐↑𝑛))) = (𝑎↑𝑛)) |
331 | 322, 326 | negsubd 11268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐↑𝑛) + -(𝑏↑𝑛)) = ((𝑐↑𝑛) − (𝑏↑𝑛))) |
332 | 329, 330,
331 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐↑𝑛) + ((𝑎↑𝑛) − (𝑐↑𝑛))) = ((𝑐↑𝑛) + -(𝑏↑𝑛))) |
333 | 322, 324,
327, 332 | addcanad 11110 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) − (𝑐↑𝑛)) = -(𝑏↑𝑛)) |
334 | 323, 333 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) + -(𝑐↑𝑛)) = -(𝑏↑𝑛)) |
335 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈
ℕ) |
336 | 317, 282,
283 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ)) |
337 | 335, 336 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛) |
338 | | oexpneg 15982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2
∥ 𝑛) → (-𝑐↑𝑛) = -(𝑐↑𝑛)) |
339 | 321, 317,
337, 338 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐↑𝑛) = -(𝑐↑𝑛)) |
340 | 339 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) + (-𝑐↑𝑛)) = ((𝑎↑𝑛) + -(𝑐↑𝑛))) |
341 | 325, 317,
337, 286 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑏↑𝑛) = -(𝑏↑𝑛)) |
342 | 334, 340,
341 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) + (-𝑐↑𝑛)) = (-𝑏↑𝑛)) |
343 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬ 0
< 𝑐 → if(0 <
𝑐, -𝑏, 𝑎) = 𝑎) |
344 | 343 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ 0
< 𝑐 → (if(0 <
𝑐, -𝑏, 𝑎)↑𝑛) = (𝑎↑𝑛)) |
345 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬ 0
< 𝑐 → if(0 <
𝑐, 𝑐, -𝑐) = -𝑐) |
346 | 345 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ 0
< 𝑐 → (if(0 <
𝑐, 𝑐, -𝑐)↑𝑛) = (-𝑐↑𝑛)) |
347 | 344, 346 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑐 → ((if(0 <
𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎↑𝑛) + (-𝑐↑𝑛))) |
348 | 347 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎↑𝑛) + (-𝑐↑𝑛))) |
349 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ 0
< 𝑐 → if(0 <
𝑐, 𝑎, -𝑏) = -𝑏) |
350 | 349 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑐 → (if(0 <
𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏↑𝑛)) |
351 | 350 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏↑𝑛)) |
352 | 342, 348,
351 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛)) |
353 | 314, 352 | pm2.61dan 809 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛)) |
354 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑏 → if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = if(0 < 𝑐, -𝑏, 𝑎)) |
355 | 354 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
< 𝑏 → (if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛)) |
356 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑏 → if(0 <
𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = if(0 < 𝑐, 𝑐, -𝑐)) |
357 | 356 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
< 𝑏 → (if(0 <
𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) |
358 | 355, 357 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
< 𝑏 → ((if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))) |
359 | 358 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))) |
360 | | iffalse 4465 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
< 𝑏 → if(0 <
𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = if(0 < 𝑐, 𝑎, -𝑏)) |
361 | 360 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
< 𝑏 → (if(0 <
𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛)) |
362 | 361 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛)) |
363 | 353, 359,
362 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛)) |
364 | 276, 363 | pm2.61dan 809 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛)) |
365 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (0 <
𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))) |
366 | 365 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (0 <
𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛)) |
367 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (0 <
𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))) |
368 | 367 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (0 <
𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) |
369 | 366, 368 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (0 <
𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛))) |
370 | 369 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛))) |
371 | | iftrue 4462 |
. . . . . . . . . . . . . . 15
⊢ (0 <
𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))) |
372 | 371 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (0 <
𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛)) |
373 | 372 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛)) |
374 | 364, 370,
373 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛)) |
375 | | simp-8r 788 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖
{0})) |
376 | 375, 10, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ) |
377 | 96 | ad8antr 736 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ) |
378 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈
ℕ) |
379 | 377, 282,
283 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ)) |
380 | 378, 379 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛) |
381 | | oexpneg 15982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2
∥ 𝑛) → (-𝑎↑𝑛) = -(𝑎↑𝑛)) |
382 | 376, 377,
380, 381 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑎↑𝑛) = -(𝑎↑𝑛)) |
383 | 382 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎↑𝑛) + (𝑐↑𝑛)) = (-(𝑎↑𝑛) + (𝑐↑𝑛))) |
384 | 377 | nnnn0d 12223 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0) |
385 | 376, 384 | expcld 13792 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎↑𝑛) ∈ ℂ) |
386 | 385 | negcld 11249 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑎↑𝑛) ∈ ℂ) |
387 | | simp-6r 784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖
{0})) |
388 | 387, 65, 246 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ) |
389 | 388, 384 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐↑𝑛) ∈ ℂ) |
390 | 386, 389 | addcld 10925 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎↑𝑛) + (𝑐↑𝑛)) ∈ ℂ) |
391 | 129, 23, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ) |
392 | 391, 384 | expcld 13792 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏↑𝑛) ∈ ℂ) |
393 | 385 | negidd 11252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎↑𝑛) + -(𝑎↑𝑛)) = 0) |
394 | 393 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎↑𝑛) + -(𝑎↑𝑛)) + (𝑐↑𝑛)) = (0 + (𝑐↑𝑛))) |
395 | 385, 386,
389 | addassd 10928 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎↑𝑛) + -(𝑎↑𝑛)) + (𝑐↑𝑛)) = ((𝑎↑𝑛) + (-(𝑎↑𝑛) + (𝑐↑𝑛)))) |
396 | 389 | addid2d 11106 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (0 + (𝑐↑𝑛)) = (𝑐↑𝑛)) |
397 | 394, 395,
396 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎↑𝑛) + (-(𝑎↑𝑛) + (𝑐↑𝑛))) = (𝑐↑𝑛)) |
398 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
399 | 397, 398 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎↑𝑛) + (-(𝑎↑𝑛) + (𝑐↑𝑛))) = ((𝑎↑𝑛) + (𝑏↑𝑛))) |
400 | 385, 390,
392, 399 | addcanad 11110 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎↑𝑛) + (𝑐↑𝑛)) = (𝑏↑𝑛)) |
401 | 383, 400 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎↑𝑛) + (𝑐↑𝑛)) = (𝑏↑𝑛)) |
402 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 <
𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = -𝑎) |
403 | 402 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 <
𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (-𝑎↑𝑛)) |
404 | 403, 308 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎↑𝑛) + (𝑐↑𝑛))) |
405 | 404 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎↑𝑛) + (𝑐↑𝑛))) |
406 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 <
𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = 𝑏) |
407 | 406 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏↑𝑛)) |
408 | 407 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏↑𝑛)) |
409 | 401, 405,
408 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛)) |
410 | | simp-7r 786 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖
{0})) |
411 | 410, 23, 168 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ) |
412 | | simp-8l 787 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈
(ℤ≥‘3)) |
413 | 412, 96, 289 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0) |
414 | 411, 413 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏↑𝑛) ∈ ℂ) |
415 | 414 | negcld 11249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏↑𝑛) ∈ ℂ) |
416 | | simp-6r 784 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖
{0})) |
417 | 416, 65, 246 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ) |
418 | 417, 413 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐↑𝑛) ∈ ℂ) |
419 | 415, 418 | addcomd 11107 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏↑𝑛) + (𝑐↑𝑛)) = ((𝑐↑𝑛) + -(𝑏↑𝑛))) |
420 | 418, 414 | negsubd 11268 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐↑𝑛) + -(𝑏↑𝑛)) = ((𝑐↑𝑛) − (𝑏↑𝑛))) |
421 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
422 | 421 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎↑𝑛) + (𝑏↑𝑛)) − (𝑏↑𝑛)) = ((𝑐↑𝑛) − (𝑏↑𝑛))) |
423 | 133, 10, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ) |
424 | 423, 413 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎↑𝑛) ∈ ℂ) |
425 | 424, 414 | pncand 11263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎↑𝑛) + (𝑏↑𝑛)) − (𝑏↑𝑛)) = (𝑎↑𝑛)) |
426 | 422, 425 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐↑𝑛) − (𝑏↑𝑛)) = (𝑎↑𝑛)) |
427 | 419, 420,
426 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏↑𝑛) + (𝑐↑𝑛)) = (𝑎↑𝑛)) |
428 | 427 | negeqd 11145 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏↑𝑛) + (𝑐↑𝑛)) = -(𝑎↑𝑛)) |
429 | 414 | negnegd 11253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → --(𝑏↑𝑛) = (𝑏↑𝑛)) |
430 | 429 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏↑𝑛) = --(𝑏↑𝑛)) |
431 | 430 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏↑𝑛) + -(𝑐↑𝑛)) = (--(𝑏↑𝑛) + -(𝑐↑𝑛))) |
432 | 412, 96 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ) |
433 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈
ℕ) |
434 | 432, 282,
283 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ)) |
435 | 433, 434 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛) |
436 | 417, 432,
435, 338 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐↑𝑛) = -(𝑐↑𝑛)) |
437 | 436 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏↑𝑛) + (-𝑐↑𝑛)) = ((𝑏↑𝑛) + -(𝑐↑𝑛))) |
438 | 415, 418 | negdid 11275 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏↑𝑛) + (𝑐↑𝑛)) = (--(𝑏↑𝑛) + -(𝑐↑𝑛))) |
439 | 431, 437,
438 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏↑𝑛) + (-𝑐↑𝑛)) = -(-(𝑏↑𝑛) + (𝑐↑𝑛))) |
440 | 423, 432,
435, 381 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑎↑𝑛) = -(𝑎↑𝑛)) |
441 | 428, 439,
440 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏↑𝑛) + (-𝑐↑𝑛)) = (-𝑎↑𝑛)) |
442 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬ 0
< 𝑐 → if(0 <
𝑐, -𝑎, 𝑏) = 𝑏) |
443 | 442 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ 0
< 𝑐 → (if(0 <
𝑐, -𝑎, 𝑏)↑𝑛) = (𝑏↑𝑛)) |
444 | 443, 346 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑐 → ((if(0 <
𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏↑𝑛) + (-𝑐↑𝑛))) |
445 | 444 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏↑𝑛) + (-𝑐↑𝑛))) |
446 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ 0
< 𝑐 → if(0 <
𝑐, 𝑏, -𝑎) = -𝑎) |
447 | 446 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑐 → (if(0 <
𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎↑𝑛)) |
448 | 447 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎↑𝑛)) |
449 | 441, 445,
448 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛)) |
450 | 409, 449 | pm2.61dan 809 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛)) |
451 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = if(0 < 𝑐, -𝑎, 𝑏)) |
452 | 451 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (0 <
𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛)) |
453 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 <
𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = if(0 < 𝑐, 𝑐, -𝑐)) |
454 | 453 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (0 <
𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) |
455 | 452, 454 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (0 <
𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))) |
456 | 455 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))) |
457 | | iftrue 4462 |
. . . . . . . . . . . . . . . . 17
⊢ (0 <
𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = if(0 < 𝑐, 𝑏, -𝑎)) |
458 | 457 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (0 <
𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛)) |
459 | 458 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛)) |
460 | 450, 456,
459 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛)) |
461 | 186 | negeqd 11145 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎↑𝑛) + (𝑏↑𝑛)) = -(𝑐↑𝑛)) |
462 | 144, 282,
283 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ)) |
463 | 161, 462 | mtbird 324 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ¬ 2 ∥ 𝑛) |
464 | 156, 144,
463, 381 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (-𝑎↑𝑛) = -(𝑎↑𝑛)) |
465 | 169, 144,
463, 286 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (-𝑏↑𝑛) = -(𝑏↑𝑛)) |
466 | 464, 465 | oveq12d 7273 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎↑𝑛) + (-𝑏↑𝑛)) = (-(𝑎↑𝑛) + -(𝑏↑𝑛))) |
467 | 141, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0) |
468 | 156, 467,
172 | expclzd 13797 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑎↑𝑛) ∈ ℂ) |
469 | 169, 170,
172 | expclzd 13797 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (𝑏↑𝑛) ∈ ℂ) |
470 | 468, 469 | negdid 11275 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎↑𝑛) + (𝑏↑𝑛)) = (-(𝑎↑𝑛) + -(𝑏↑𝑛))) |
471 | 466, 470 | eqtr4d 2781 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎↑𝑛) + (-𝑏↑𝑛)) = -((𝑎↑𝑛) + (𝑏↑𝑛))) |
472 | 139, 65, 246 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℂ) |
473 | 472, 144,
463, 338 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (-𝑐↑𝑛) = -(𝑐↑𝑛)) |
474 | 461, 471,
473 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎↑𝑛) + (-𝑏↑𝑛)) = (-𝑐↑𝑛)) |
475 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑏 → if(0 <
𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = -𝑎) |
476 | 475 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
< 𝑏 → (if(0 <
𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (-𝑎↑𝑛)) |
477 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 0
< 𝑏 → if(0 <
𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = -𝑏) |
478 | 477 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
< 𝑏 → (if(0 <
𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (-𝑏↑𝑛)) |
479 | 476, 478 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
< 𝑏 → ((if(0 <
𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎↑𝑛) + (-𝑏↑𝑛))) |
480 | 479 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎↑𝑛) + (-𝑏↑𝑛))) |
481 | | iffalse 4465 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
< 𝑏 → if(0 <
𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = -𝑐) |
482 | 481 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
< 𝑏 → (if(0 <
𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐↑𝑛)) |
483 | 482 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐↑𝑛)) |
484 | 474, 480,
483 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛)) |
485 | 460, 484 | pm2.61dan 809 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛)) |
486 | | iffalse 4465 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
< 𝑎 → if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) |
487 | 486 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (¬ 0
< 𝑎 → (if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛)) |
488 | | iffalse 4465 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
< 𝑎 → if(0 <
𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) |
489 | 488 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (¬ 0
< 𝑎 → (if(0 <
𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) |
490 | 487, 489 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (¬ 0
< 𝑎 → ((if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛))) |
491 | 490 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛))) |
492 | | iffalse 4465 |
. . . . . . . . . . . . . . 15
⊢ (¬ 0
< 𝑎 → if(0 <
𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) |
493 | 492 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (¬ 0
< 𝑎 → (if(0 <
𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛)) |
494 | 493 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛)) |
495 | 485, 491,
494 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢
(((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 <
𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛)) |
496 | 374, 495 | pm2.61dan 809 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛)) |
497 | | iffalse 4465 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ if((𝑛 / 2) ∈
ℕ, (abs‘𝑎),
if(0 < 𝑎, if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) |
498 | 497 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ (if((𝑛 / 2) ∈
ℕ, (abs‘𝑎),
if(0 < 𝑎, if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛)) |
499 | | iffalse 4465 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ if((𝑛 / 2) ∈
ℕ, (abs‘𝑏),
if(0 < 𝑎, if(0 <
𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) |
500 | 499 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ (if((𝑛 / 2) ∈
ℕ, (abs‘𝑏),
if(0 < 𝑎, if(0 <
𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) |
501 | 498, 500 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ ((if((𝑛 / 2) ∈
ℕ, (abs‘𝑎),
if(0 < 𝑎, if(0 <
𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛))) |
502 | 501 | adantl 481 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ,
(abs‘𝑎), if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛))) |
503 | | iffalse 4465 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ if((𝑛 / 2) ∈
ℕ, (abs‘𝑐),
if(0 < 𝑎, if(0 <
𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) |
504 | 503 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (¬
(𝑛 / 2) ∈ ℕ
→ (if((𝑛 / 2) ∈
ℕ, (abs‘𝑐),
if(0 < 𝑎, if(0 <
𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛)) |
505 | 504 | adantl 481 |
. . . . . . . . . . 11
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ,
(abs‘𝑐), if(0 <
𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛)) |
506 | 496, 502,
505 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢
((((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ,
(abs‘𝑎), if(0 <
𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)) |
507 | 266, 506 | pm2.61dan 809 |
. . . . . . . . 9
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)) |
508 | 3, 6, 8, 48, 85, 197, 507 | 3rspcedvdw 40109 |
. . . . . . . 8
⊢
(((((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
∧ 𝑐 ∈ (ℤ
∖ {0})) ∧ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛)) |
509 | 508 | rexlimdva2 3215 |
. . . . . . 7
⊢ (((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0}))
→ (∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛))) |
510 | 509 | rexlimdva 3212 |
. . . . . 6
⊢ ((𝑛 ∈
(ℤ≥‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) →
(∃𝑏 ∈ (ℤ
∖ {0})∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛))) |
511 | 510 | rexlimdva 3212 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘3) → (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖
{0})∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛))) |
512 | 511 | reximia 3172 |
. . . 4
⊢
(∃𝑛 ∈
(ℤ≥‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖
{0})∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) → ∃𝑛 ∈
(ℤ≥‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛)) |
513 | | nne 2946 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛)) |
514 | 513 | bicomi 223 |
. . . . . . . . . . . 12
⊢ (((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ¬ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
515 | 514 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
516 | | rexnal 3165 |
. . . . . . . . . . 11
⊢
(∃𝑐 ∈
(ℤ ∖ {0}) ¬ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
517 | 515, 516 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
518 | 517 | rexbii 3177 |
. . . . . . . . 9
⊢
(∃𝑏 ∈
(ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ∃𝑏 ∈ (ℤ ∖ {0}) ¬
∀𝑐 ∈ (ℤ
∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
519 | | rexnal 3165 |
. . . . . . . . 9
⊢
(∃𝑏 ∈
(ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
520 | 518, 519 | bitri 274 |
. . . . . . . 8
⊢
(∃𝑏 ∈
(ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
521 | 520 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑎 ∈
(ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ∃𝑎 ∈ (ℤ ∖ {0}) ¬
∀𝑏 ∈ (ℤ
∖ {0})∀𝑐
∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
522 | | rexnal 3165 |
. . . . . . 7
⊢
(∃𝑎 ∈
(ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
523 | 521, 522 | bitri 274 |
. . . . . 6
⊢
(∃𝑎 ∈
(ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
524 | 523 | rexbii 3177 |
. . . . 5
⊢
(∃𝑛 ∈
(ℤ≥‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖
{0})∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ∃𝑛 ∈ (ℤ≥‘3)
¬ ∀𝑎 ∈
(ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
525 | | rexnal 3165 |
. . . . 5
⊢
(∃𝑛 ∈
(ℤ≥‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ¬ ∀𝑛 ∈
(ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
526 | 524, 525 | bitri 274 |
. . . 4
⊢
(∃𝑛 ∈
(ℤ≥‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖
{0})∃𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) = (𝑐↑𝑛) ↔ ¬ ∀𝑛 ∈
(ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
527 | | nne 2946 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛)) |
528 | 527 | bicomi 223 |
. . . . . . . . . . . 12
⊢ (((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ¬ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
529 | 528 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ∃𝑧 ∈ ℕ ¬ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
530 | | rexnal 3165 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ℕ ¬ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
531 | 529, 530 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
532 | 531 | rexbii 3177 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
ℕ ∃𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
533 | | rexnal 3165 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
ℕ ¬ ∀𝑧
∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
534 | 532, 533 | bitri 274 |
. . . . . . . 8
⊢
(∃𝑦 ∈
ℕ ∃𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
535 | 534 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ ∃𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
536 | | rexnal 3165 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℕ ¬ ∀𝑦
∈ ℕ ∀𝑧
∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
537 | 535, 536 | bitri 274 |
. . . . . 6
⊢
(∃𝑥 ∈
ℕ ∃𝑦 ∈
ℕ ∃𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
538 | 537 | rexbii 3177 |
. . . . 5
⊢
(∃𝑛 ∈
(ℤ≥‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ∃𝑛 ∈ (ℤ≥‘3)
¬ ∀𝑥 ∈
ℕ ∀𝑦 ∈
ℕ ∀𝑧 ∈
ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
539 | | rexnal 3165 |
. . . . 5
⊢
(∃𝑛 ∈
(ℤ≥‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ¬ ∀𝑛 ∈
(ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
540 | 538, 539 | bitri 274 |
. . . 4
⊢
(∃𝑛 ∈
(ℤ≥‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) = (𝑧↑𝑛) ↔ ¬ ∀𝑛 ∈
(ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
541 | 512, 526,
540 | 3imtr3i 290 |
. . 3
⊢ (¬
∀𝑛 ∈
(ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) → ¬ ∀𝑛 ∈
(ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
542 | 541 | con4i 114 |
. 2
⊢
(∀𝑛 ∈
(ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) → ∀𝑛 ∈
(ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
543 | | dfn2 12176 |
. . . . . 6
⊢ ℕ =
(ℕ0 ∖ {0}) |
544 | | nn0ssz 12271 |
. . . . . . 7
⊢
ℕ0 ⊆ ℤ |
545 | | ssdif 4070 |
. . . . . . 7
⊢
(ℕ0 ⊆ ℤ → (ℕ0 ∖
{0}) ⊆ (ℤ ∖ {0})) |
546 | 544, 545 | ax-mp 5 |
. . . . . 6
⊢
(ℕ0 ∖ {0}) ⊆ (ℤ ∖
{0}) |
547 | 543, 546 | eqsstri 3951 |
. . . . 5
⊢ ℕ
⊆ (ℤ ∖ {0}) |
548 | | ssel 3910 |
. . . . . . 7
⊢ (ℕ
⊆ (ℤ ∖ {0}) → (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ ∖
{0}))) |
549 | | ss2ralv 3985 |
. . . . . . 7
⊢ (ℕ
⊆ (ℤ ∖ {0}) → (∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛))) |
550 | 548, 549 | imim12d 81 |
. . . . . 6
⊢ (ℕ
⊆ (ℤ ∖ {0}) → ((𝑎 ∈ (ℤ ∖ {0}) →
∀𝑏 ∈ (ℤ
∖ {0})∀𝑐
∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) → (𝑎 ∈ ℕ → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)))) |
551 | 550 | ralimdv2 3101 |
. . . . 5
⊢ (ℕ
⊆ (ℤ ∖ {0}) → (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛))) |
552 | 547, 551 | ax-mp 5 |
. . . 4
⊢
(∀𝑎 ∈
(ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |
553 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → (𝑎↑𝑛) = (𝑥↑𝑛)) |
554 | 553 | oveq1d 7270 |
. . . . . 6
⊢ (𝑎 = 𝑥 → ((𝑎↑𝑛) + (𝑏↑𝑛)) = ((𝑥↑𝑛) + (𝑏↑𝑛))) |
555 | 554 | neeq1d 3002 |
. . . . 5
⊢ (𝑎 = 𝑥 → (((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ((𝑥↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛))) |
556 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑏 = 𝑦 → (𝑏↑𝑛) = (𝑦↑𝑛)) |
557 | 556 | oveq2d 7271 |
. . . . . 6
⊢ (𝑏 = 𝑦 → ((𝑥↑𝑛) + (𝑏↑𝑛)) = ((𝑥↑𝑛) + (𝑦↑𝑛))) |
558 | 557 | neeq1d 3002 |
. . . . 5
⊢ (𝑏 = 𝑦 → (((𝑥↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑐↑𝑛))) |
559 | | oveq1 7262 |
. . . . . 6
⊢ (𝑐 = 𝑧 → (𝑐↑𝑛) = (𝑧↑𝑛)) |
560 | 559 | neeq2d 3003 |
. . . . 5
⊢ (𝑐 = 𝑧 → (((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑐↑𝑛) ↔ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛))) |
561 | 555, 558,
560 | cbvral3vw 3387 |
. . . 4
⊢
(∀𝑎 ∈
ℕ ∀𝑏 ∈
ℕ ∀𝑐 ∈
ℕ ((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
562 | 552, 561 | sylib 217 |
. . 3
⊢
(∀𝑎 ∈
(ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖
{0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
563 | 562 | ralimi 3086 |
. 2
⊢
(∀𝑛 ∈
(ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛) → ∀𝑛 ∈
(ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛)) |
564 | 542, 563 | impbii 208 |
1
⊢
(∀𝑛 ∈
(ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ∀𝑛 ∈
(ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖
{0})∀𝑐 ∈
(ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) |