Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffltz Structured version   Visualization version   GIF version

Theorem dffltz 42622
Description: Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎𝑛) + (𝑏𝑛) = (𝑐𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.)
Assertion
Ref Expression
dffltz (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Distinct variable group:   𝑛,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧

Proof of Theorem dffltz
StepHypRef Expression
1 oveq1 7394 . . . . . . . . . . 11 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (𝑥𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛))
21oveq1d 7402 . . . . . . . . . 10 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → ((𝑥𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)))
32eqeq1d 2731 . . . . . . . . 9 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
4 oveq1 7394 . . . . . . . . . . 11 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (𝑦𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛))
54oveq2d 7403 . . . . . . . . . 10 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)))
65eqeq1d 2731 . . . . . . . . 9 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛)))
7 oveq1 7394 . . . . . . . . . 10 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (𝑧𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
87eqeq2d 2740 . . . . . . . . 9 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)))
9 simp-4r 783 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑎 ∈ (ℤ ∖ {0}))
10 eldifi 4094 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ∈ ℤ)
11 eldifsni 4754 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ≠ 0)
1210, 11jca 511 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ∖ {0}) → (𝑎 ∈ ℤ ∧ 𝑎 ≠ 0))
13 nnabscl 15292 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
149, 12, 133syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑎) ∈ ℕ)
15 simp-6r 787 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
1615eldifad 3926 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
17 simplr 768 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
18 elnnz 12539 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
1916, 17, 18sylanbrc 583 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℕ)
20 eldifsni 4754 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
2120ad6antlr 737 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ≠ 0)
22 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑏)
23 eldifi 4094 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
2423ad6antlr 737 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
2521, 22, 24negn0nposznnd 42270 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑏 ∈ ℕ)
26 simp-7r 789 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
2726eldifad 3926 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
28 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑎)
2927, 28, 18sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℕ)
3025, 29ifclda 4524 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, -𝑏, 𝑎) ∈ ℕ)
3119, 30ifclda 4524 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) ∈ ℕ)
3211ad7antlr 739 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ≠ 0)
33 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑎)
3410ad7antlr 739 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
3532, 33, 34negn0nposznnd 42270 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑎 ∈ ℕ)
36 simp-6r 787 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
3736eldifad 3926 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
38 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑏)
39 elnnz 12539 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
4037, 38, 39sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℕ)
4135, 40ifclda 4524 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, -𝑎, 𝑏) ∈ ℕ)
4211ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
43 simplr 768 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
4410ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
4542, 43, 44negn0nposznnd 42270 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑎 ∈ ℕ)
4641, 45ifclda 4524 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) ∈ ℕ)
4731, 46ifclda 4524 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) ∈ ℕ)
4814, 47ifcld 4535 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) ∈ ℕ)
49 simpllr 775 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑏 ∈ (ℤ ∖ {0}))
5023, 20jca 511 . . . . . . . . . . 11 (𝑏 ∈ (ℤ ∖ {0}) → (𝑏 ∈ ℤ ∧ 𝑏 ≠ 0))
51 nnabscl 15292 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ 𝑏 ≠ 0) → (abs‘𝑏) ∈ ℕ)
5249, 50, 513syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑏) ∈ ℕ)
53 simp-5r 785 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
5453eldifad 3926 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
55 simpr 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
5654, 55, 39sylanbrc 583 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℕ)
57 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
5857eldifad 3926 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
59 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
60 elnnz 12539 . . . . . . . . . . . . . 14 (𝑐 ∈ ℕ ↔ (𝑐 ∈ ℤ ∧ 0 < 𝑐))
6158, 59, 60sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
62 eldifsni 4754 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ≠ 0)
6362ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
64 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
65 eldifi 4094 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ∈ ℤ)
6665ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
6763, 64, 66negn0nposznnd 42270 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
6861, 67ifclda 4524 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
6956, 68ifclda 4524 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) ∈ ℕ)
70 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
7170eldifad 3926 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
72 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
7371, 72, 60sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
7462ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
75 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
7665ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
7774, 75, 76negn0nposznnd 42270 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
7873, 77ifclda 4524 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
7920ad5antlr 735 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
80 simpr 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
8123ad5antlr 735 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
8279, 80, 81negn0nposznnd 42270 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑏 ∈ ℕ)
8378, 82ifclda 4524 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) ∈ ℕ)
8469, 83ifclda 4524 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) ∈ ℕ)
8552, 84ifcld 4535 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) ∈ ℕ)
86 simpllr 775 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ (ℤ ∖ {0}))
8786eldifad 3926 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℤ)
8886, 62syl 17 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ≠ 0)
89 nnabscl 15292 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑐 ≠ 0) → (abs‘𝑐) ∈ ℕ)
9087, 88, 89syl2anc 584 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℕ)
91 simp-5r 785 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
9291eldifad 3926 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℤ)
93 simp-7r 789 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
9493eldifad 3926 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
9594zred 12638 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℝ)
96 eluz3nn 12848 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℕ)
9796ad7antr 738 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ)
9897nnnn0d 12503 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ0)
9995, 98reexpcld 14128 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
100 simp-6r 787 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
101100eldifad 3926 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
102101zred 12638 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℝ)
103102, 98reexpcld 14128 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
104 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
105 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
10695, 97, 105oexpreposd 42310 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
107104, 106mpbid 232 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑎𝑛))
108 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
109102, 97, 105oexpreposd 42310 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
110108, 109mpbid 232 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑏𝑛))
11199, 103, 107, 110addgt0d 11753 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < ((𝑎𝑛) + (𝑏𝑛)))
112 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
113111, 112breqtrd 5133 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑐𝑛))
11492zred 12638 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℝ)
115114, 97, 105oexpreposd 42310 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
116113, 115mpbird 257 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑐)
11792, 116, 60sylanbrc 583 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℕ)
118 simp-8r 791 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
119118eldifad 3926 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
120 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑎)
121119, 120, 18sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℕ)
122 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
123122, 20syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ≠ 0)
124 simplr 768 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑏)
125122eldifad 3926 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
126123, 124, 125negn0nposznnd 42270 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑏 ∈ ℕ)
127121, 126ifclda 4524 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑎, -𝑏) ∈ ℕ)
128117, 127ifclda 4524 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) ∈ ℕ)
129 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
130129eldifad 3926 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
131 simplr 768 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑏)
132130, 131, 39sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℕ)
133 simp-8r 791 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
134133, 11syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ≠ 0)
135 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑎)
136133eldifad 3926 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
137134, 135, 136negn0nposznnd 42270 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑎 ∈ ℕ)
138132, 137ifclda 4524 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑏, -𝑎) ∈ ℕ)
139 simp-5r 785 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
140139, 62syl 17 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ≠ 0)
141 simp-7r 789 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
142141eldifad 3926 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
143142zred 12638 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℝ)
14496ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ)
145144nnnn0d 12503 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ0)
146143, 145reexpcld 14128 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
147 simp-6r 787 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
148147eldifad 3926 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
149148zred 12638 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℝ)
150149, 145reexpcld 14128 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
151146, 150readdcld 11203 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) ∈ ℝ)
152 0red 11177 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 0 ∈ ℝ)
15311neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℤ ∖ {0}) → ¬ 𝑎 = 0)
154141, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 𝑎 = 0)
155 zcn 12534 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
156141, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℂ)
157 expeq0 14057 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
158156, 144, 157syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
159154, 158mtbird 325 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑎𝑛) = 0)
160 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
161 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
162143, 144, 161oexpreposd 42310 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
163160, 162mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑎𝑛))
164 ioran 985 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)) ↔ (¬ (𝑎𝑛) = 0 ∧ ¬ 0 < (𝑎𝑛)))
165159, 163, 164sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)))
166146, 152lttrid 11312 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) < 0 ↔ ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛))))
167165, 166mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) < 0)
168 zcn 12534 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
169147, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℂ)
170147, 20syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
171 eluzelz 12803 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℤ)
172171ad7antr 738 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℤ)
173169, 170, 172expne0d 14117 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ≠ 0)
174173neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑏𝑛) = 0)
175 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
176149, 144, 161oexpreposd 42310 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
177175, 176mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑏𝑛))
178 ioran 985 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)) ↔ (¬ (𝑏𝑛) = 0 ∧ ¬ 0 < (𝑏𝑛)))
179174, 177, 178sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)))
180150, 152lttrid 11312 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑏𝑛) < 0 ↔ ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛))))
181179, 180mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) < 0)
182146, 150, 152, 152, 167, 181lt2addd 11801 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < (0 + 0))
183 00id 11349 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
184182, 183breqtrdi 5148 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < 0)
185151, 152, 184ltnsymd 11323 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < ((𝑎𝑛) + (𝑏𝑛)))
186 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
187186eqcomd 2735 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
188187breq2d 5119 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < (𝑐𝑛) ↔ 0 < ((𝑎𝑛) + (𝑏𝑛))))
189185, 188mtbird 325 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑐𝑛))
190139eldifad 3926 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℤ)
191190zred 12638 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℝ)
192191, 144, 161oexpreposd 42310 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
193189, 192mtbird 325 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑐)
194140, 193, 190negn0nposznnd 42270 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑐 ∈ ℕ)
195138, 194ifclda 4524 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) ∈ ℕ)
196128, 195ifclda 4524 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) ∈ ℕ)
19790, 196ifclda 4524 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) ∈ ℕ)
198 simplr 768 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
199 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ (ℤ ∖ {0}))
200199eldifad 3926 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℤ)
201200zred 12638 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℝ)
202 absresq 15268 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → ((abs‘𝑎)↑2) = (𝑎↑2))
203201, 202syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑2) = (𝑎↑2))
204203oveq1d 7402 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑2)↑(𝑛 / 2)) = ((𝑎↑2)↑(𝑛 / 2)))
205199, 10, 1553syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℂ)
206205abscld 15405 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℝ)
207206recnd 11202 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℂ)
208 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ)
209208nnnn0d 12503 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ0)
210 2nn0 12459 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
211210a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℕ0)
212207, 209, 211expmuld 14114 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (((abs‘𝑎)↑2)↑(𝑛 / 2)))
213205, 209, 211expmuld 14114 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎↑(2 · (𝑛 / 2))) = ((𝑎↑2)↑(𝑛 / 2)))
214204, 212, 2133eqtr4d 2774 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (𝑎↑(2 · (𝑛 / 2))))
215 simp-5l 784 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ (ℤ‘3))
216 nncn 12194 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
217215, 96, 2163syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ ℂ)
218 2cnd 12264 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℂ)
219 2ne0 12290 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
220219a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ≠ 0)
221217, 218, 220divcan2d 11960 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (2 · (𝑛 / 2)) = 𝑛)
222221eqcomd 2735 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 = (2 · (𝑛 / 2)))
223222oveq2d 7403 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = ((abs‘𝑎)↑(2 · (𝑛 / 2))))
224222oveq2d 7403 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎𝑛) = (𝑎↑(2 · (𝑛 / 2))))
225214, 223, 2243eqtr4d 2774 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = (𝑎𝑛))
226 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ (ℤ ∖ {0}))
227226eldifad 3926 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℤ)
228227zred 12638 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℝ)
229 absresq 15268 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → ((abs‘𝑏)↑2) = (𝑏↑2))
230228, 229syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑2) = (𝑏↑2))
231230oveq1d 7402 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑏)↑2)↑(𝑛 / 2)) = ((𝑏↑2)↑(𝑛 / 2)))
232226, 23, 1683syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℂ)
233232abscld 15405 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℝ)
234233recnd 11202 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℂ)
235234, 209, 211expmuld 14114 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (((abs‘𝑏)↑2)↑(𝑛 / 2)))
236232, 209, 211expmuld 14114 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏↑(2 · (𝑛 / 2))) = ((𝑏↑2)↑(𝑛 / 2)))
237231, 235, 2363eqtr4d 2774 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (𝑏↑(2 · (𝑛 / 2))))
238222oveq2d 7403 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = ((abs‘𝑏)↑(2 · (𝑛 / 2))))
239222oveq2d 7403 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏𝑛) = (𝑏↑(2 · (𝑛 / 2))))
240237, 238, 2393eqtr4d 2774 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = (𝑏𝑛))
241225, 240oveq12d 7405 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
24287zred 12638 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℝ)
243 absresq 15268 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ → ((abs‘𝑐)↑2) = (𝑐↑2))
244242, 243syl 17 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑2) = (𝑐↑2))
245244oveq1d 7402 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑐)↑2)↑(𝑛 / 2)) = ((𝑐↑2)↑(𝑛 / 2)))
246 zcn 12534 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℤ → 𝑐 ∈ ℂ)
24786, 65, 2463syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℂ)
248247abscld 15405 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℝ)
249248recnd 11202 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℂ)
250249, 209, 211expmuld 14114 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (((abs‘𝑐)↑2)↑(𝑛 / 2)))
251247, 209, 211expmuld 14114 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐↑(2 · (𝑛 / 2))) = ((𝑐↑2)↑(𝑛 / 2)))
252245, 250, 2513eqtr4d 2774 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (𝑐↑(2 · (𝑛 / 2))))
253222oveq2d 7403 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = ((abs‘𝑐)↑(2 · (𝑛 / 2))))
254222oveq2d 7403 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐𝑛) = (𝑐↑(2 · (𝑛 / 2))))
255252, 253, 2543eqtr4d 2774 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = (𝑐𝑛))
256198, 241, 2553eqtr4d 2774 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((abs‘𝑐)↑𝑛))
257 iftrue 4494 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = (abs‘𝑎))
258257oveq1d 7402 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = ((abs‘𝑎)↑𝑛))
259 iftrue 4494 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = (abs‘𝑏))
260259oveq1d 7402 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = ((abs‘𝑏)↑𝑛))
261258, 260oveq12d 7405 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
262261adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
263 iftrue 4494 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = (abs‘𝑐))
264263oveq1d 7402 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
265264adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
266256, 262, 2653eqtr4d 2774 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
267 iftrue 4494 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = 𝑎)
268267oveq1d 7402 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (𝑎𝑛))
269 iftrue 4494 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = 𝑏)
270269oveq1d 7402 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (𝑏𝑛))
271268, 270oveq12d 7405 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
272271adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
273 iftrue 4494 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = 𝑐)
274273oveq1d 7402 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
275274adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
276112, 272, 2753eqtr4d 2774 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
277 simp-7r 789 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
278277, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
279 simp-8l 790 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
280279, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
281 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
282 2nn 12259 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
283 nndivdvds 16231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
284280, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
285281, 284mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
286 oexpneg 16315 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑏𝑛) = -(𝑏𝑛))
287278, 280, 285, 286syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
288287oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (-(𝑏𝑛) + (𝑐𝑛)))
289 nnnn0 12449 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
290279, 96, 2893syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
291278, 290expcld 14111 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
292291negcld 11520 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
293 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
294293, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
295294, 290expcld 14111 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
296292, 295addcomd 11376 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
297295, 291negsubd 11539 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
298296, 297eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
299118, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
300299, 290expcld 14111 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
301 simp-5r 785 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
302301eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
303300, 291, 302mvrraddd 11590 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
304288, 298, 3033eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
305 iftrue 4494 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = -𝑏)
306305oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (-𝑏𝑛))
307 iftrue 4494 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = 𝑐)
308307oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (𝑐𝑛))
309306, 308oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
310309adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
311 iftrue 4494 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = 𝑎)
312311oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
313312adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
314304, 310, 3133eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
315 simp-8r 791 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
316315, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
31796ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
318317nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
319316, 318expcld 14111 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
320 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
321320, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
322321, 318expcld 14111 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
323319, 322negsubd 11539 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = ((𝑎𝑛) − (𝑐𝑛)))
324319, 322subcld 11533 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) ∈ ℂ)
325122, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
326325, 318expcld 14111 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
327326negcld 11520 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
328 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
329319, 326, 328mvlraddd 11588 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) = ((𝑐𝑛) − (𝑏𝑛)))
330322, 319pncan3d 11536 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = (𝑎𝑛))
331322, 326negsubd 11539 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
332329, 330, 3313eqtr4d 2774 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = ((𝑐𝑛) + -(𝑏𝑛)))
333322, 324, 327, 332addcanad 11379 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) = -(𝑏𝑛))
334323, 333eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = -(𝑏𝑛))
335 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
336317, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
337335, 336mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
338 oexpneg 16315 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑐𝑛) = -(𝑐𝑛))
339321, 317, 337, 338syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
340339oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = ((𝑎𝑛) + -(𝑐𝑛)))
341325, 317, 337, 286syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
342334, 340, 3413eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = (-𝑏𝑛))
343 iffalse 4497 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = 𝑎)
344343oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (𝑎𝑛))
345 iffalse 4497 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = -𝑐)
346345oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (-𝑐𝑛))
347344, 346oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
348347adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
349 iffalse 4497 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = -𝑏)
350349oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
351350adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
352342, 348, 3513eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
353314, 352pm2.61dan 812 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
354 iffalse 4497 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = if(0 < 𝑐, -𝑏, 𝑎))
355354oveq1d 7402 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛))
356 iffalse 4497 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = if(0 < 𝑐, 𝑐, -𝑐))
357356oveq1d 7402 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
358355, 357oveq12d 7405 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
359358adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
360 iffalse 4497 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = if(0 < 𝑐, 𝑎, -𝑏))
361360oveq1d 7402 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
362361adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
363353, 359, 3623eqtr4d 2774 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
364276, 363pm2.61dan 812 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
365 iftrue 4494 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)))
366365oveq1d 7402 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛))
367 iftrue 4494 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)))
368367oveq1d 7402 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛))
369366, 368oveq12d 7405 . . . . . . . . . . . . . 14 (0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
370369adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
371 iftrue 4494 . . . . . . . . . . . . . . 15 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)))
372371oveq1d 7402 . . . . . . . . . . . . . 14 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
373372adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
374364, 370, 3733eqtr4d 2774 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
375 simp-8r 791 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
376375, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
37796ad8antr 740 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
378 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
379377, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
380378, 379mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
381 oexpneg 16315 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑎𝑛) = -(𝑎𝑛))
382376, 377, 380, 381syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
383382oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (-(𝑎𝑛) + (𝑐𝑛)))
384377nnnn0d 12503 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
385376, 384expcld 14111 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
386385negcld 11520 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑎𝑛) ∈ ℂ)
387 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
388387, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
389388, 384expcld 14111 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
390386, 389addcld 11193 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) ∈ ℂ)
391129, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
392391, 384expcld 14111 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
393385negidd 11523 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + -(𝑎𝑛)) = 0)
394393oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = (0 + (𝑐𝑛)))
395385, 386, 389addassd 11196 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))))
396389addlidd 11375 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (0 + (𝑐𝑛)) = (𝑐𝑛))
397394, 395, 3963eqtr3d 2772 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = (𝑐𝑛))
398 simp-5r 785 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
399397, 398eqtr4d 2767 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = ((𝑎𝑛) + (𝑏𝑛)))
400385, 390, 392, 399addcanad 11379 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
401383, 400eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
402 iftrue 4494 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = -𝑎)
403402oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (-𝑎𝑛))
404403, 308oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
405404adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
406 iftrue 4494 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = 𝑏)
407406oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
408407adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
409401, 405, 4083eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
410 simp-7r 789 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
411410, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
412 simp-8l 790 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
413412, 96, 2893syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
414411, 413expcld 14111 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
415414negcld 11520 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
416 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
417416, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
418417, 413expcld 14111 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
419415, 418addcomd 11376 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
420418, 414negsubd 11539 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
421 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
422421oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
423133, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
424423, 413expcld 14111 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
425424, 414pncand 11534 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = (𝑎𝑛))
426422, 425eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
427419, 420, 4263eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
428427negeqd 11415 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = -(𝑎𝑛))
429414negnegd 11524 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → --(𝑏𝑛) = (𝑏𝑛))
430429eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) = --(𝑏𝑛))
431430oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + -(𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
432412, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
433 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
434432, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
435433, 434mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
436417, 432, 435, 338syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
437436oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = ((𝑏𝑛) + -(𝑐𝑛)))
438415, 418negdid 11546 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
439431, 437, 4383eqtr4d 2774 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = -(-(𝑏𝑛) + (𝑐𝑛)))
440423, 432, 435, 381syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
441428, 439, 4403eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = (-𝑎𝑛))
442 iffalse 4497 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = 𝑏)
443442oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (𝑏𝑛))
444443, 346oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
445444adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
446 iffalse 4497 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = -𝑎)
447446oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
448447adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
449441, 445, 4483eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
450409, 449pm2.61dan 812 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
451 iftrue 4494 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = if(0 < 𝑐, -𝑎, 𝑏))
452451oveq1d 7402 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛))
453 iftrue 4494 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = if(0 < 𝑐, 𝑐, -𝑐))
454453oveq1d 7402 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
455452, 454oveq12d 7405 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
456455adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
457 iftrue 4494 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = if(0 < 𝑐, 𝑏, -𝑎))
458457oveq1d 7402 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
459458adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
460450, 456, 4593eqtr4d 2774 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
461186negeqd 11415 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = -(𝑐𝑛))
462144, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
463161, 462mtbird 325 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 2 ∥ 𝑛)
464156, 144, 463, 381syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑎𝑛) = -(𝑎𝑛))
465169, 144, 463, 286syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑏𝑛) = -(𝑏𝑛))
466464, 465oveq12d 7405 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
467141, 11syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
468156, 467, 172expclzd 14116 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℂ)
469169, 170, 172expclzd 14116 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℂ)
470468, 469negdid 11546 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
471466, 470eqtr4d 2767 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = -((𝑎𝑛) + (𝑏𝑛)))
472139, 65, 2463syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℂ)
473472, 144, 463, 338syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑐𝑛) = -(𝑐𝑛))
474461, 471, 4733eqtr4d 2774 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-𝑐𝑛))
475 iffalse 4497 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = -𝑎)
476475oveq1d 7402 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (-𝑎𝑛))
477 iffalse 4497 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = -𝑏)
478477oveq1d 7402 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (-𝑏𝑛))
479476, 478oveq12d 7405 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
480479adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
481 iffalse 4497 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = -𝑐)
482481oveq1d 7402 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
483482adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
484474, 480, 4833eqtr4d 2774 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
485460, 484pm2.61dan 812 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
486 iffalse 4497 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))
487486oveq1d 7402 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛))
488 iffalse 4497 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))
489488oveq1d 7402 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛))
490487, 489oveq12d 7405 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
491490adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
492 iffalse 4497 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))
493492oveq1d 7402 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
494493adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
495485, 491, 4943eqtr4d 2774 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
496374, 495pm2.61dan 812 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
497 iffalse 4497 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))
498497oveq1d 7402 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛))
499 iffalse 4497 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))
500499oveq1d 7402 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛))
501498, 500oveq12d 7405 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
502501adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
503 iffalse 4497 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))
504503oveq1d 7402 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
505504adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
506496, 502, 5053eqtr4d 2774 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
507266, 506pm2.61dan 812 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
5083, 6, 8, 48, 85, 197, 5073rspcedvdw 3606 . . . . . . . 8 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
509508rexlimdva2 3136 . . . . . . 7 (((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) → (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
510509rexlimdva 3134 . . . . . 6 ((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) → (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
511510rexlimdva 3134 . . . . 5 (𝑛 ∈ (ℤ‘3) → (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
512511reximia 3064 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
513 nne 2929 . . . . . . . . . . . . 13 (¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
514513bicomi 224 . . . . . . . . . . . 12 (((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
515514rexbii 3076 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
516 rexnal 3082 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
517515, 516bitri 275 . . . . . . . . . 10 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
518517rexbii 3076 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
519 rexnal 3082 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
520518, 519bitri 275 . . . . . . . 8 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
521520rexbii 3076 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
522 rexnal 3082 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
523521, 522bitri 275 . . . . . 6 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
524523rexbii 3076 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
525 rexnal 3082 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
526524, 525bitri 275 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
527 nne 2929 . . . . . . . . . . . . 13 (¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
528527bicomi 224 . . . . . . . . . . . 12 (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
529528rexbii 3076 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
530 rexnal 3082 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
531529, 530bitri 275 . . . . . . . . . 10 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
532531rexbii 3076 . . . . . . . . 9 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
533 rexnal 3082 . . . . . . . . 9 (∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
534532, 533bitri 275 . . . . . . . 8 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
535534rexbii 3076 . . . . . . 7 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
536 rexnal 3082 . . . . . . 7 (∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
537535, 536bitri 275 . . . . . 6 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
538537rexbii 3076 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
539 rexnal 3082 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
540538, 539bitri 275 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
541512, 526, 5403imtr3i 291 . . 3 (¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
542541con4i 114 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
543 dfn2 12455 . . . . . 6 ℕ = (ℕ0 ∖ {0})
544 nn0ssz 12552 . . . . . . 7 0 ⊆ ℤ
545 ssdif 4107 . . . . . . 7 (ℕ0 ⊆ ℤ → (ℕ0 ∖ {0}) ⊆ (ℤ ∖ {0}))
546544, 545ax-mp 5 . . . . . 6 (ℕ0 ∖ {0}) ⊆ (ℤ ∖ {0})
547543, 546eqsstri 3993 . . . . 5 ℕ ⊆ (ℤ ∖ {0})
548 ssel 3940 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ ∖ {0})))
549 ss2ralv 4017 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
550548, 549imim12d 81 . . . . . 6 (ℕ ⊆ (ℤ ∖ {0}) → ((𝑎 ∈ (ℤ ∖ {0}) → ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)) → (𝑎 ∈ ℕ → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))))
551550ralimdv2 3142 . . . . 5 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
552547, 551ax-mp 5 . . . 4 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
553 oveq1 7394 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑛) = (𝑥𝑛))
554553oveq1d 7402 . . . . . 6 (𝑎 = 𝑥 → ((𝑎𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑏𝑛)))
555554neeq1d 2984 . . . . 5 (𝑎 = 𝑥 → (((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
556 oveq1 7394 . . . . . . 7 (𝑏 = 𝑦 → (𝑏𝑛) = (𝑦𝑛))
557556oveq2d 7403 . . . . . 6 (𝑏 = 𝑦 → ((𝑥𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑦𝑛)))
558557neeq1d 2984 . . . . 5 (𝑏 = 𝑦 → (((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛)))
559 oveq1 7394 . . . . . 6 (𝑐 = 𝑧 → (𝑐𝑛) = (𝑧𝑛))
560559neeq2d 2985 . . . . 5 (𝑐 = 𝑧 → (((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛)))
561555, 558, 560cbvral3vw 3221 . . . 4 (∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
562552, 561sylib 218 . . 3 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
563562ralimi 3066 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
564542, 563impbii 209 1 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  wss 3914  ifcif 4488  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  cexp 14026  abscabs 15200  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator