Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffltz Structured version   Visualization version   GIF version

Theorem dffltz 42666
Description: Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎𝑛) + (𝑏𝑛) = (𝑐𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.)
Assertion
Ref Expression
dffltz (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Distinct variable group:   𝑛,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧

Proof of Theorem dffltz
StepHypRef Expression
1 oveq1 7353 . . . . . . . . . . 11 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (𝑥𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛))
21oveq1d 7361 . . . . . . . . . 10 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → ((𝑥𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)))
32eqeq1d 2733 . . . . . . . . 9 (𝑥 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) → (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
4 oveq1 7353 . . . . . . . . . . 11 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (𝑦𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛))
54oveq2d 7362 . . . . . . . . . 10 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)))
65eqeq1d 2733 . . . . . . . . 9 (𝑦 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛)))
7 oveq1 7353 . . . . . . . . . 10 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (𝑧𝑛) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
87eqeq2d 2742 . . . . . . . . 9 (𝑧 = if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) → (((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (𝑧𝑛) ↔ ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛)))
9 simp-4r 783 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑎 ∈ (ℤ ∖ {0}))
10 eldifi 4081 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ∈ ℤ)
11 eldifsni 4742 . . . . . . . . . . . 12 (𝑎 ∈ (ℤ ∖ {0}) → 𝑎 ≠ 0)
1210, 11jca 511 . . . . . . . . . . 11 (𝑎 ∈ (ℤ ∖ {0}) → (𝑎 ∈ ℤ ∧ 𝑎 ≠ 0))
13 nnabscl 15230 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
149, 12, 133syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑎) ∈ ℕ)
15 simp-6r 787 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
1615eldifad 3914 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
17 simplr 768 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
18 elnnz 12475 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
1916, 17, 18sylanbrc 583 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℕ)
20 eldifsni 4742 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ≠ 0)
2120ad6antlr 737 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ≠ 0)
22 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑏)
23 eldifi 4081 . . . . . . . . . . . . . . 15 (𝑏 ∈ (ℤ ∖ {0}) → 𝑏 ∈ ℤ)
2423ad6antlr 737 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
2521, 22, 24negn0nposznnd 42314 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑏 ∈ ℕ)
26 simp-7r 789 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
2726eldifad 3914 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
28 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑎)
2927, 28, 18sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℕ)
3025, 29ifclda 4511 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, -𝑏, 𝑎) ∈ ℕ)
3119, 30ifclda 4511 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) ∈ ℕ)
3211ad7antlr 739 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ≠ 0)
33 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 0 < 𝑎)
3410ad7antlr 739 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
3532, 33, 34negn0nposznnd 42314 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -𝑎 ∈ ℕ)
36 simp-6r 787 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
3736eldifad 3914 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
38 simplr 768 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 0 < 𝑏)
39 elnnz 12475 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
4037, 38, 39sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℕ)
4135, 40ifclda 4511 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, -𝑎, 𝑏) ∈ ℕ)
4211ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
43 simplr 768 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
4410ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
4542, 43, 44negn0nposznnd 42314 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑎 ∈ ℕ)
4641, 45ifclda 4511 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) ∈ ℕ)
4731, 46ifclda 4511 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) ∈ ℕ)
4814, 47ifcld 4522 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) ∈ ℕ)
49 simpllr 775 . . . . . . . . . . 11 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → 𝑏 ∈ (ℤ ∖ {0}))
5023, 20jca 511 . . . . . . . . . . 11 (𝑏 ∈ (ℤ ∖ {0}) → (𝑏 ∈ ℤ ∧ 𝑏 ≠ 0))
51 nnabscl 15230 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ 𝑏 ≠ 0) → (abs‘𝑏) ∈ ℕ)
5249, 50, 513syl 18 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → (abs‘𝑏) ∈ ℕ)
53 simp-5r 785 . . . . . . . . . . . . . 14 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
5453eldifad 3914 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
55 simpr 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
5654, 55, 39sylanbrc 583 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℕ)
57 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
5857eldifad 3914 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
59 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
60 elnnz 12475 . . . . . . . . . . . . . 14 (𝑐 ∈ ℕ ↔ (𝑐 ∈ ℤ ∧ 0 < 𝑐))
6158, 59, 60sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
62 eldifsni 4742 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ≠ 0)
6362ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
64 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
65 eldifi 4081 . . . . . . . . . . . . . . 15 (𝑐 ∈ (ℤ ∖ {0}) → 𝑐 ∈ ℤ)
6665ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
6763, 64, 66negn0nposznnd 42314 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
6861, 67ifclda 4511 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
6956, 68ifclda 4511 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) ∈ ℕ)
70 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
7170eldifad 3914 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℤ)
72 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑐)
7371, 72, 60sylanbrc 583 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℕ)
7462ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ≠ 0)
75 simpr 484 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑐)
7665ad5antlr 735 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℤ)
7774, 75, 76negn0nposznnd 42314 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑐 ∈ ℕ)
7873, 77ifclda 4511 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑐, -𝑐) ∈ ℕ)
7920ad5antlr 735 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
80 simpr 484 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
8123ad5antlr 735 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
8279, 80, 81negn0nposznnd 42314 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑏 ∈ ℕ)
8378, 82ifclda 4511 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) ∈ ℕ)
8469, 83ifclda 4511 . . . . . . . . . 10 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) ∈ ℕ)
8552, 84ifcld 4522 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) ∈ ℕ)
86 simpllr 775 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ (ℤ ∖ {0}))
8786eldifad 3914 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℤ)
8886, 62syl 17 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ≠ 0)
89 nnabscl 15230 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑐 ≠ 0) → (abs‘𝑐) ∈ ℕ)
9087, 88, 89syl2anc 584 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℕ)
91 simp-5r 785 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
9291eldifad 3914 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℤ)
93 simp-7r 789 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
9493eldifad 3914 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℤ)
9594zred 12574 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑎 ∈ ℝ)
96 eluz3nn 12784 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℕ)
9796ad7antr 738 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ)
9897nnnn0d 12439 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑛 ∈ ℕ0)
9995, 98reexpcld 14067 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
100 simp-6r 787 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
101100eldifad 3914 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℤ)
102101zred 12574 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑏 ∈ ℝ)
103102, 98reexpcld 14067 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
104 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑎)
105 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
10695, 97, 105oexpreposd 42354 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
107104, 106mpbid 232 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑎𝑛))
108 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑏)
109102, 97, 105oexpreposd 42354 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
110108, 109mpbid 232 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑏𝑛))
11199, 103, 107, 110addgt0d 11689 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < ((𝑎𝑛) + (𝑏𝑛)))
112 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
113111, 112breqtrd 5117 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < (𝑐𝑛))
11492zred 12574 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℝ)
115114, 97, 105oexpreposd 42354 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
116113, 115mpbird 257 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 0 < 𝑐)
11792, 116, 60sylanbrc 583 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → 𝑐 ∈ ℕ)
118 simp-8r 791 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
119118eldifad 3914 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℤ)
120 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑎)
121119, 120, 18sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℕ)
122 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
123122, 20syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ≠ 0)
124 simplr 768 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑏)
125122eldifad 3914 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℤ)
126123, 124, 125negn0nposznnd 42314 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑏 ∈ ℕ)
127121, 126ifclda 4511 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → if(0 < 𝑐, 𝑎, -𝑏) ∈ ℕ)
128117, 127ifclda 4511 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) ∈ ℕ)
129 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
130129eldifad 3914 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℤ)
131 simplr 768 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 0 < 𝑏)
132130, 131, 39sylanbrc 583 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℕ)
133 simp-8r 791 . . . . . . . . . . . . . . 15 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
134133, 11syl 17 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ≠ 0)
135 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 0 < 𝑎)
136133eldifad 3914 . . . . . . . . . . . . . 14 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℤ)
137134, 135, 136negn0nposznnd 42314 . . . . . . . . . . . . 13 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -𝑎 ∈ ℕ)
138132, 137ifclda 4511 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → if(0 < 𝑐, 𝑏, -𝑎) ∈ ℕ)
139 simp-5r 785 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ (ℤ ∖ {0}))
140139, 62syl 17 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ≠ 0)
141 simp-7r 789 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ (ℤ ∖ {0}))
142141eldifad 3914 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℤ)
143142zred 12574 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℝ)
14496ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ)
145144nnnn0d 12439 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℕ0)
146143, 145reexpcld 14067 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℝ)
147 simp-6r 787 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ (ℤ ∖ {0}))
148147eldifad 3914 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℤ)
149148zred 12574 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℝ)
150149, 145reexpcld 14067 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℝ)
151146, 150readdcld 11138 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) ∈ ℝ)
152 0red 11112 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 0 ∈ ℝ)
15311neneqd 2933 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℤ ∖ {0}) → ¬ 𝑎 = 0)
154141, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 𝑎 = 0)
155 zcn 12470 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
156141, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ∈ ℂ)
157 expeq0 13996 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
158156, 144, 157syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) = 0 ↔ 𝑎 = 0))
159154, 158mtbird 325 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑎𝑛) = 0)
160 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑎)
161 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑛 / 2) ∈ ℕ)
162143, 144, 161oexpreposd 42354 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑎 ↔ 0 < (𝑎𝑛)))
163160, 162mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑎𝑛))
164 ioran 985 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)) ↔ (¬ (𝑎𝑛) = 0 ∧ ¬ 0 < (𝑎𝑛)))
165159, 163, 164sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛)))
166146, 152lttrid 11248 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) < 0 ↔ ¬ ((𝑎𝑛) = 0 ∨ 0 < (𝑎𝑛))))
167165, 166mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) < 0)
168 zcn 12470 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
169147, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ∈ ℂ)
170147, 20syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑏 ≠ 0)
171 eluzelz 12739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℤ)
172171ad7antr 738 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑛 ∈ ℤ)
173169, 170, 172expne0d 14056 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ≠ 0)
174173neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ (𝑏𝑛) = 0)
175 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑏)
176149, 144, 161oexpreposd 42354 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑏 ↔ 0 < (𝑏𝑛)))
177175, 176mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑏𝑛))
178 ioran 985 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)) ↔ (¬ (𝑏𝑛) = 0 ∧ ¬ 0 < (𝑏𝑛)))
179174, 177, 178sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛)))
180150, 152lttrid 11248 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑏𝑛) < 0 ↔ ¬ ((𝑏𝑛) = 0 ∨ 0 < (𝑏𝑛))))
181179, 180mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) < 0)
182146, 150, 152, 152, 167, 181lt2addd 11737 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < (0 + 0))
183 00id 11285 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
184182, 183breqtrdi 5132 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) < 0)
185151, 152, 184ltnsymd 11259 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < ((𝑎𝑛) + (𝑏𝑛)))
186 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
187186eqcomd 2737 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
188187breq2d 5103 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < (𝑐𝑛) ↔ 0 < ((𝑎𝑛) + (𝑏𝑛))))
189185, 188mtbird 325 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < (𝑐𝑛))
190139eldifad 3914 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℤ)
191190zred 12574 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℝ)
192191, 144, 161oexpreposd 42354 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (0 < 𝑐 ↔ 0 < (𝑐𝑛)))
193189, 192mtbird 325 . . . . . . . . . . . . 13 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 0 < 𝑐)
194140, 193, 190negn0nposznnd 42314 . . . . . . . . . . . 12 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -𝑐 ∈ ℕ)
195138, 194ifclda 4511 . . . . . . . . . . 11 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) ∈ ℕ)
196128, 195ifclda 4511 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) ∈ ℕ)
19790, 196ifclda 4511 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) ∈ ℕ)
198 simplr 768 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
199 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ (ℤ ∖ {0}))
200199eldifad 3914 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℤ)
201200zred 12574 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℝ)
202 absresq 15206 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → ((abs‘𝑎)↑2) = (𝑎↑2))
203201, 202syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑2) = (𝑎↑2))
204203oveq1d 7361 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑2)↑(𝑛 / 2)) = ((𝑎↑2)↑(𝑛 / 2)))
205199, 10, 1553syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑎 ∈ ℂ)
206205abscld 15343 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℝ)
207206recnd 11137 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑎) ∈ ℂ)
208 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ)
209208nnnn0d 12439 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑛 / 2) ∈ ℕ0)
210 2nn0 12395 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
211210a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℕ0)
212207, 209, 211expmuld 14053 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (((abs‘𝑎)↑2)↑(𝑛 / 2)))
213205, 209, 211expmuld 14053 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎↑(2 · (𝑛 / 2))) = ((𝑎↑2)↑(𝑛 / 2)))
214204, 212, 2133eqtr4d 2776 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑(2 · (𝑛 / 2))) = (𝑎↑(2 · (𝑛 / 2))))
215 simp-5l 784 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ (ℤ‘3))
216 nncn 12130 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
217215, 96, 2163syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 ∈ ℂ)
218 2cnd 12200 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ∈ ℂ)
219 2ne0 12226 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
220219a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 2 ≠ 0)
221217, 218, 220divcan2d 11896 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (2 · (𝑛 / 2)) = 𝑛)
222221eqcomd 2737 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑛 = (2 · (𝑛 / 2)))
223222oveq2d 7362 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = ((abs‘𝑎)↑(2 · (𝑛 / 2))))
224222oveq2d 7362 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑎𝑛) = (𝑎↑(2 · (𝑛 / 2))))
225214, 223, 2243eqtr4d 2776 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑎)↑𝑛) = (𝑎𝑛))
226 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ (ℤ ∖ {0}))
227226eldifad 3914 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℤ)
228227zred 12574 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℝ)
229 absresq 15206 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → ((abs‘𝑏)↑2) = (𝑏↑2))
230228, 229syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑2) = (𝑏↑2))
231230oveq1d 7361 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑏)↑2)↑(𝑛 / 2)) = ((𝑏↑2)↑(𝑛 / 2)))
232226, 23, 1683syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑏 ∈ ℂ)
233232abscld 15343 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℝ)
234233recnd 11137 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑏) ∈ ℂ)
235234, 209, 211expmuld 14053 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (((abs‘𝑏)↑2)↑(𝑛 / 2)))
236232, 209, 211expmuld 14053 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏↑(2 · (𝑛 / 2))) = ((𝑏↑2)↑(𝑛 / 2)))
237231, 235, 2363eqtr4d 2776 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑(2 · (𝑛 / 2))) = (𝑏↑(2 · (𝑛 / 2))))
238222oveq2d 7362 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = ((abs‘𝑏)↑(2 · (𝑛 / 2))))
239222oveq2d 7362 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑏𝑛) = (𝑏↑(2 · (𝑛 / 2))))
240237, 238, 2393eqtr4d 2776 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑏)↑𝑛) = (𝑏𝑛))
241225, 240oveq12d 7364 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
24287zred 12574 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℝ)
243 absresq 15206 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ → ((abs‘𝑐)↑2) = (𝑐↑2))
244242, 243syl 17 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑2) = (𝑐↑2))
245244oveq1d 7361 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑐)↑2)↑(𝑛 / 2)) = ((𝑐↑2)↑(𝑛 / 2)))
246 zcn 12470 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℤ → 𝑐 ∈ ℂ)
24786, 65, 2463syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → 𝑐 ∈ ℂ)
248247abscld 15343 . . . . . . . . . . . . . . . 16 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℝ)
249248recnd 11137 . . . . . . . . . . . . . . 15 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (abs‘𝑐) ∈ ℂ)
250249, 209, 211expmuld 14053 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (((abs‘𝑐)↑2)↑(𝑛 / 2)))
251247, 209, 211expmuld 14053 . . . . . . . . . . . . . 14 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐↑(2 · (𝑛 / 2))) = ((𝑐↑2)↑(𝑛 / 2)))
252245, 250, 2513eqtr4d 2776 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑(2 · (𝑛 / 2))) = (𝑐↑(2 · (𝑛 / 2))))
253222oveq2d 7362 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = ((abs‘𝑐)↑(2 · (𝑛 / 2))))
254222oveq2d 7362 . . . . . . . . . . . . 13 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (𝑐𝑛) = (𝑐↑(2 · (𝑛 / 2))))
255252, 253, 2543eqtr4d 2776 . . . . . . . . . . . 12 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((abs‘𝑐)↑𝑛) = (𝑐𝑛))
256198, 241, 2553eqtr4d 2776 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)) = ((abs‘𝑐)↑𝑛))
257 iftrue 4481 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = (abs‘𝑎))
258257oveq1d 7361 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = ((abs‘𝑎)↑𝑛))
259 iftrue 4481 . . . . . . . . . . . . . 14 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = (abs‘𝑏))
260259oveq1d 7361 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = ((abs‘𝑏)↑𝑛))
261258, 260oveq12d 7364 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
262261adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (((abs‘𝑎)↑𝑛) + ((abs‘𝑏)↑𝑛)))
263 iftrue 4481 . . . . . . . . . . . . 13 ((𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = (abs‘𝑐))
264263oveq1d 7361 . . . . . . . . . . . 12 ((𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
265264adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = ((abs‘𝑐)↑𝑛))
266256, 262, 2653eqtr4d 2776 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
267 iftrue 4481 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = 𝑎)
268267oveq1d 7361 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (𝑎𝑛))
269 iftrue 4481 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = 𝑏)
270269oveq1d 7361 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (𝑏𝑛))
271268, 270oveq12d 7364 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
272271adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((𝑎𝑛) + (𝑏𝑛)))
273 iftrue 4481 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = 𝑐)
274273oveq1d 7361 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
275274adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (𝑐𝑛))
276112, 272, 2753eqtr4d 2776 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
277 simp-7r 789 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
278277, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
279 simp-8l 790 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
280279, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
281 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
282 2nn 12195 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
283 nndivdvds 16169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
284280, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
285281, 284mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
286 oexpneg 16253 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑏𝑛) = -(𝑏𝑛))
287278, 280, 285, 286syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
288287oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (-(𝑏𝑛) + (𝑐𝑛)))
289 nnnn0 12385 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
290279, 96, 2893syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
291278, 290expcld 14050 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
292291negcld 11456 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
293 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
294293, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
295294, 290expcld 14050 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
296292, 295addcomd 11312 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
297295, 291negsubd 11475 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
298296, 297eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
299118, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
300299, 290expcld 14050 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
301 simp-5r 785 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
302301eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) = ((𝑎𝑛) + (𝑏𝑛)))
303300, 291, 302mvrraddd 11526 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
304288, 298, 3033eqtrd 2770 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
305 iftrue 4481 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = -𝑏)
306305oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (-𝑏𝑛))
307 iftrue 4481 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = 𝑐)
308307oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (𝑐𝑛))
309306, 308oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
310309adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑏𝑛) + (𝑐𝑛)))
311 iftrue 4481 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = 𝑎)
312311oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
313312adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (𝑎𝑛))
314304, 310, 3133eqtr4d 2776 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
315 simp-8r 791 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
316315, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
31796ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
318317nnnn0d 12439 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
319316, 318expcld 14050 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
320 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
321320, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
322321, 318expcld 14050 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
323319, 322negsubd 11475 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = ((𝑎𝑛) − (𝑐𝑛)))
324319, 322subcld 11469 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) ∈ ℂ)
325122, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
326325, 318expcld 14050 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
327326negcld 11456 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
328 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
329319, 326, 328mvlraddd 11524 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) = ((𝑐𝑛) − (𝑏𝑛)))
330322, 319pncan3d 11472 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = (𝑎𝑛))
331322, 326negsubd 11475 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
332329, 330, 3313eqtr4d 2776 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + ((𝑎𝑛) − (𝑐𝑛))) = ((𝑐𝑛) + -(𝑏𝑛)))
333322, 324, 327, 332addcanad 11315 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) − (𝑐𝑛)) = -(𝑏𝑛))
334323, 333eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + -(𝑐𝑛)) = -(𝑏𝑛))
335 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
336317, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
337335, 336mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
338 oexpneg 16253 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑐𝑛) = -(𝑐𝑛))
339321, 317, 337, 338syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
340339oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = ((𝑎𝑛) + -(𝑐𝑛)))
341325, 317, 337, 286syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑏𝑛) = -(𝑏𝑛))
342334, 340, 3413eqtr4d 2776 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (-𝑐𝑛)) = (-𝑏𝑛))
343 iffalse 4484 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑏, 𝑎) = 𝑎)
344343oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) = (𝑎𝑛))
345 iffalse 4484 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑐, -𝑐) = -𝑐)
346345oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛) = (-𝑐𝑛))
347344, 346oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
348347adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑎𝑛) + (-𝑐𝑛)))
349 iffalse 4484 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑎, -𝑏) = -𝑏)
350349oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
351350adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛) = (-𝑏𝑛))
352342, 348, 3513eqtr4d 2776 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
353314, 352pm2.61dan 812 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
354 iffalse 4484 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)) = if(0 < 𝑐, -𝑏, 𝑎))
355354oveq1d 7361 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) = (if(0 < 𝑐, -𝑏, 𝑎)↑𝑛))
356 iffalse 4484 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)) = if(0 < 𝑐, 𝑐, -𝑐))
357356oveq1d 7361 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
358355, 357oveq12d 7364 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
359358adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = ((if(0 < 𝑐, -𝑏, 𝑎)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
360 iffalse 4484 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)) = if(0 < 𝑐, 𝑎, -𝑏))
361360oveq1d 7361 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
362361adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛) = (if(0 < 𝑐, 𝑎, -𝑏)↑𝑛))
363353, 359, 3623eqtr4d 2776 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
364276, 363pm2.61dan 812 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
365 iftrue 4481 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)))
366365oveq1d 7361 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛))
367 iftrue 4481 . . . . . . . . . . . . . . . 16 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)))
368367oveq1d 7361 . . . . . . . . . . . . . . 15 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛))
369366, 368oveq12d 7364 . . . . . . . . . . . . . 14 (0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
370369adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎))↑𝑛) + (if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐))↑𝑛)))
371 iftrue 4481 . . . . . . . . . . . . . . 15 (0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)))
372371oveq1d 7361 . . . . . . . . . . . . . 14 (0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
373372adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏))↑𝑛))
374364, 370, 3733eqtr4d 2776 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
375 simp-8r 791 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ (ℤ ∖ {0}))
376375, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑎 ∈ ℂ)
37796ad8antr 740 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ)
378 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
379377, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
380378, 379mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
381 oexpneg 16253 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (-𝑎𝑛) = -(𝑎𝑛))
382376, 377, 380, 381syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
383382oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (-(𝑎𝑛) + (𝑐𝑛)))
384377nnnn0d 12439 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑛 ∈ ℕ0)
385376, 384expcld 14050 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
386385negcld 11456 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → -(𝑎𝑛) ∈ ℂ)
387 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
388387, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑐 ∈ ℂ)
389388, 384expcld 14050 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
390386, 389addcld 11128 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) ∈ ℂ)
391129, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → 𝑏 ∈ ℂ)
392391, 384expcld 14050 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
393385negidd 11459 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + -(𝑎𝑛)) = 0)
394393oveq1d 7361 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = (0 + (𝑐𝑛)))
395385, 386, 389addassd 11131 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (((𝑎𝑛) + -(𝑎𝑛)) + (𝑐𝑛)) = ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))))
396389addlidd 11311 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (0 + (𝑐𝑛)) = (𝑐𝑛))
397394, 395, 3963eqtr3d 2774 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = (𝑐𝑛))
398 simp-5r 785 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
399397, 398eqtr4d 2769 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((𝑎𝑛) + (-(𝑎𝑛) + (𝑐𝑛))) = ((𝑎𝑛) + (𝑏𝑛)))
400385, 390, 392, 399addcanad 11315 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (-(𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
401383, 400eqtrd 2766 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((-𝑎𝑛) + (𝑐𝑛)) = (𝑏𝑛))
402 iftrue 4481 . . . . . . . . . . . . . . . . . . . 20 (0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = -𝑎)
403402oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (-𝑎𝑛))
404403, 308oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
405404adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((-𝑎𝑛) + (𝑐𝑛)))
406 iftrue 4481 . . . . . . . . . . . . . . . . . . 19 (0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = 𝑏)
407406oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
408407adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (𝑏𝑛))
409401, 405, 4083eqtr4d 2776 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
410 simp-7r 789 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ (ℤ ∖ {0}))
411410, 23, 1683syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑏 ∈ ℂ)
412 simp-8l 790 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ (ℤ‘3))
413412, 96, 2893syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ0)
414411, 413expcld 14050 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) ∈ ℂ)
415414negcld 11456 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(𝑏𝑛) ∈ ℂ)
416 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ (ℤ ∖ {0}))
417416, 65, 2463syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑐 ∈ ℂ)
418417, 413expcld 14050 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑐𝑛) ∈ ℂ)
419415, 418addcomd 11312 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = ((𝑐𝑛) + -(𝑏𝑛)))
420418, 414negsubd 11475 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) + -(𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
421 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
422421oveq1d 7361 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = ((𝑐𝑛) − (𝑏𝑛)))
423133, 10, 1553syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑎 ∈ ℂ)
424423, 413expcld 14050 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑎𝑛) ∈ ℂ)
425424, 414pncand 11470 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (((𝑎𝑛) + (𝑏𝑛)) − (𝑏𝑛)) = (𝑎𝑛))
426422, 425eqtr3d 2768 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑐𝑛) − (𝑏𝑛)) = (𝑎𝑛))
427419, 420, 4263eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-(𝑏𝑛) + (𝑐𝑛)) = (𝑎𝑛))
428427negeqd 11351 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = -(𝑎𝑛))
429414negnegd 11460 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → --(𝑏𝑛) = (𝑏𝑛))
430429eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (𝑏𝑛) = --(𝑏𝑛))
431430oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + -(𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
432412, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → 𝑛 ∈ ℕ)
433 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ (𝑛 / 2) ∈ ℕ)
434432, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
435433, 434mtbird 325 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ¬ 2 ∥ 𝑛)
436417, 432, 435, 338syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑐𝑛) = -(𝑐𝑛))
437436oveq2d 7362 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = ((𝑏𝑛) + -(𝑐𝑛)))
438415, 418negdid 11482 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → -(-(𝑏𝑛) + (𝑐𝑛)) = (--(𝑏𝑛) + -(𝑐𝑛)))
439431, 437, 4383eqtr4d 2776 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = -(-(𝑏𝑛) + (𝑐𝑛)))
440423, 432, 435, 381syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (-𝑎𝑛) = -(𝑎𝑛))
441428, 439, 4403eqtr4d 2776 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((𝑏𝑛) + (-𝑐𝑛)) = (-𝑎𝑛))
442 iffalse 4484 . . . . . . . . . . . . . . . . . . . 20 (¬ 0 < 𝑐 → if(0 < 𝑐, -𝑎, 𝑏) = 𝑏)
443442oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) = (𝑏𝑛))
444443, 346oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
445444adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = ((𝑏𝑛) + (-𝑐𝑛)))
446 iffalse 4484 . . . . . . . . . . . . . . . . . . 19 (¬ 0 < 𝑐 → if(0 < 𝑐, 𝑏, -𝑎) = -𝑎)
447446oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑐 → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
448447adantl 481 . . . . . . . . . . . . . . . . 17 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛) = (-𝑎𝑛))
449441, 445, 4483eqtr4d 2776 . . . . . . . . . . . . . . . 16 (((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) ∧ ¬ 0 < 𝑐) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
450409, 449pm2.61dan 812 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
451 iftrue 4481 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = if(0 < 𝑐, -𝑎, 𝑏))
452451oveq1d 7361 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (if(0 < 𝑐, -𝑎, 𝑏)↑𝑛))
453 iftrue 4481 . . . . . . . . . . . . . . . . . 18 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = if(0 < 𝑐, 𝑐, -𝑐))
454453oveq1d 7361 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛))
455452, 454oveq12d 7364 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
456455adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((if(0 < 𝑐, -𝑎, 𝑏)↑𝑛) + (if(0 < 𝑐, 𝑐, -𝑐)↑𝑛)))
457 iftrue 4481 . . . . . . . . . . . . . . . . 17 (0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = if(0 < 𝑐, 𝑏, -𝑎))
458457oveq1d 7361 . . . . . . . . . . . . . . . 16 (0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
459458adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (if(0 < 𝑐, 𝑏, -𝑎)↑𝑛))
460450, 456, 4593eqtr4d 2776 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
461186negeqd 11351 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = -(𝑐𝑛))
462144, 282, 283sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℕ))
463161, 462mtbird 325 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ¬ 2 ∥ 𝑛)
464156, 144, 463, 381syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑎𝑛) = -(𝑎𝑛))
465169, 144, 463, 286syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑏𝑛) = -(𝑏𝑛))
466464, 465oveq12d 7364 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
467141, 11syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑎 ≠ 0)
468156, 467, 172expclzd 14055 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑎𝑛) ∈ ℂ)
469169, 170, 172expclzd 14055 . . . . . . . . . . . . . . . . . 18 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (𝑏𝑛) ∈ ℂ)
470468, 469negdid 11482 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → -((𝑎𝑛) + (𝑏𝑛)) = (-(𝑎𝑛) + -(𝑏𝑛)))
471466, 470eqtr4d 2769 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = -((𝑎𝑛) + (𝑏𝑛)))
472139, 65, 2463syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → 𝑐 ∈ ℂ)
473472, 144, 463, 338syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (-𝑐𝑛) = -(𝑐𝑛))
474461, 471, 4733eqtr4d 2776 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((-𝑎𝑛) + (-𝑏𝑛)) = (-𝑐𝑛))
475 iffalse 4484 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎) = -𝑎)
476475oveq1d 7361 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) = (-𝑎𝑛))
477 iffalse 4484 . . . . . . . . . . . . . . . . . 18 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏) = -𝑏)
478477oveq1d 7361 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛) = (-𝑏𝑛))
479476, 478oveq12d 7364 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
480479adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = ((-𝑎𝑛) + (-𝑏𝑛)))
481 iffalse 4484 . . . . . . . . . . . . . . . . 17 (¬ 0 < 𝑏 → if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐) = -𝑐)
482481oveq1d 7361 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑏 → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
483482adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛) = (-𝑐𝑛))
484474, 480, 4833eqtr4d 2776 . . . . . . . . . . . . . 14 ((((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) ∧ ¬ 0 < 𝑏) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
485460, 484pm2.61dan 812 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
486 iffalse 4484 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)) = if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))
487486oveq1d 7361 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛))
488 iffalse 4484 . . . . . . . . . . . . . . . 16 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)) = if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))
489488oveq1d 7361 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛))
490487, 489oveq12d 7364 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
491490adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = ((if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)↑𝑛) + (if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)↑𝑛)))
492 iffalse 4484 . . . . . . . . . . . . . . 15 (¬ 0 < 𝑎 → if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)) = if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))
493492oveq1d 7361 . . . . . . . . . . . . . 14 (¬ 0 < 𝑎 → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
494493adantl 481 . . . . . . . . . . . . 13 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛) = (if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)↑𝑛))
495485, 491, 4943eqtr4d 2776 . . . . . . . . . . . 12 (((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) ∧ ¬ 0 < 𝑎) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
496374, 495pm2.61dan 812 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
497 iffalse 4484 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))) = if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))
498497oveq1d 7361 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛))
499 iffalse 4484 . . . . . . . . . . . . . 14 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))) = if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))
500499oveq1d 7361 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛))
501498, 500oveq12d 7364 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
502501adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = ((if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎))↑𝑛) + (if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏))↑𝑛)))
503 iffalse 4484 . . . . . . . . . . . . 13 (¬ (𝑛 / 2) ∈ ℕ → if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))) = if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))
504503oveq1d 7361 . . . . . . . . . . . 12 (¬ (𝑛 / 2) ∈ ℕ → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
505504adantl 481 . . . . . . . . . . 11 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛) = (if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐))↑𝑛))
506496, 502, 5053eqtr4d 2776 . . . . . . . . . 10 ((((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
507266, 506pm2.61dan 812 . . . . . . . . 9 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ((if((𝑛 / 2) ∈ ℕ, (abs‘𝑎), if(0 < 𝑎, if(0 < 𝑏, 𝑎, if(0 < 𝑐, -𝑏, 𝑎)), if(0 < 𝑏, if(0 < 𝑐, -𝑎, 𝑏), -𝑎)))↑𝑛) + (if((𝑛 / 2) ∈ ℕ, (abs‘𝑏), if(0 < 𝑎, if(0 < 𝑏, 𝑏, if(0 < 𝑐, 𝑐, -𝑐)), if(0 < 𝑏, if(0 < 𝑐, 𝑐, -𝑐), -𝑏)))↑𝑛)) = (if((𝑛 / 2) ∈ ℕ, (abs‘𝑐), if(0 < 𝑎, if(0 < 𝑏, 𝑐, if(0 < 𝑐, 𝑎, -𝑏)), if(0 < 𝑏, if(0 < 𝑐, 𝑏, -𝑎), -𝑐)))↑𝑛))
5083, 6, 8, 48, 85, 197, 5073rspcedvdw 3595 . . . . . . . 8 (((((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) ∧ 𝑐 ∈ (ℤ ∖ {0})) ∧ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
509508rexlimdva2 3135 . . . . . . 7 (((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) ∧ 𝑏 ∈ (ℤ ∖ {0})) → (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
510509rexlimdva 3133 . . . . . 6 ((𝑛 ∈ (ℤ‘3) ∧ 𝑎 ∈ (ℤ ∖ {0})) → (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
511510rexlimdva 3133 . . . . 5 (𝑛 ∈ (ℤ‘3) → (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛)))
512511reximia 3067 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) → ∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
513 nne 2932 . . . . . . . . . . . . 13 (¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛))
514513bicomi 224 . . . . . . . . . . . 12 (((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
515514rexbii 3079 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
516 rexnal 3084 . . . . . . . . . . 11 (∃𝑐 ∈ (ℤ ∖ {0}) ¬ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
517515, 516bitri 275 . . . . . . . . . 10 (∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
518517rexbii 3079 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
519 rexnal 3084 . . . . . . . . 9 (∃𝑏 ∈ (ℤ ∖ {0}) ¬ ∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
520518, 519bitri 275 . . . . . . . 8 (∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
521520rexbii 3079 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
522 rexnal 3084 . . . . . . 7 (∃𝑎 ∈ (ℤ ∖ {0}) ¬ ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
523521, 522bitri 275 . . . . . 6 (∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
524523rexbii 3079 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
525 rexnal 3084 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
526524, 525bitri 275 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑎 ∈ (ℤ ∖ {0})∃𝑏 ∈ (ℤ ∖ {0})∃𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) = (𝑐𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
527 nne 2932 . . . . . . . . . . . . 13 (¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛))
528527bicomi 224 . . . . . . . . . . . 12 (((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
529528rexbii 3079 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
530 rexnal 3084 . . . . . . . . . . 11 (∃𝑧 ∈ ℕ ¬ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
531529, 530bitri 275 . . . . . . . . . 10 (∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
532531rexbii 3079 . . . . . . . . 9 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
533 rexnal 3084 . . . . . . . . 9 (∃𝑦 ∈ ℕ ¬ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
534532, 533bitri 275 . . . . . . . 8 (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
535534rexbii 3079 . . . . . . 7 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
536 rexnal 3084 . . . . . . 7 (∃𝑥 ∈ ℕ ¬ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
537535, 536bitri 275 . . . . . 6 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
538537rexbii 3079 . . . . 5 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
539 rexnal 3084 . . . . 5 (∃𝑛 ∈ (ℤ‘3) ¬ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
540538, 539bitri 275 . . . 4 (∃𝑛 ∈ (ℤ‘3)∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) = (𝑧𝑛) ↔ ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
541512, 526, 5403imtr3i 291 . . 3 (¬ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ¬ ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
542541con4i 114 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
543 dfn2 12391 . . . . . 6 ℕ = (ℕ0 ∖ {0})
544 nn0ssz 12488 . . . . . . 7 0 ⊆ ℤ
545 ssdif 4094 . . . . . . 7 (ℕ0 ⊆ ℤ → (ℕ0 ∖ {0}) ⊆ (ℤ ∖ {0}))
546544, 545ax-mp 5 . . . . . 6 (ℕ0 ∖ {0}) ⊆ (ℤ ∖ {0})
547543, 546eqsstri 3981 . . . . 5 ℕ ⊆ (ℤ ∖ {0})
548 ssel 3928 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (𝑎 ∈ ℕ → 𝑎 ∈ (ℤ ∖ {0})))
549 ss2ralv 4005 . . . . . . 7 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
550548, 549imim12d 81 . . . . . 6 (ℕ ⊆ (ℤ ∖ {0}) → ((𝑎 ∈ (ℤ ∖ {0}) → ∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)) → (𝑎 ∈ ℕ → ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))))
551550ralimdv2 3141 . . . . 5 (ℕ ⊆ (ℤ ∖ {0}) → (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
552547, 551ax-mp 5 . . . 4 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
553 oveq1 7353 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑛) = (𝑥𝑛))
554553oveq1d 7361 . . . . . 6 (𝑎 = 𝑥 → ((𝑎𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑏𝑛)))
555554neeq1d 2987 . . . . 5 (𝑎 = 𝑥 → (((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛)))
556 oveq1 7353 . . . . . . 7 (𝑏 = 𝑦 → (𝑏𝑛) = (𝑦𝑛))
557556oveq2d 7362 . . . . . 6 (𝑏 = 𝑦 → ((𝑥𝑛) + (𝑏𝑛)) = ((𝑥𝑛) + (𝑦𝑛)))
558557neeq1d 2987 . . . . 5 (𝑏 = 𝑦 → (((𝑥𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛)))
559 oveq1 7353 . . . . . 6 (𝑐 = 𝑧 → (𝑐𝑛) = (𝑧𝑛))
560559neeq2d 2988 . . . . 5 (𝑐 = 𝑧 → (((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑐𝑛) ↔ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛)))
561555, 558, 560cbvral3vw 3216 . . . 4 (∀𝑎 ∈ ℕ ∀𝑏 ∈ ℕ ∀𝑐 ∈ ℕ ((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
562552, 561sylib 218 . . 3 (∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
563562ralimi 3069 . 2 (∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛) → ∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛))
564542, 563impbii 209 1 (∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3899  wss 3902  ifcif 4475  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003   + caddc 11006   · cmul 11008   < clt 11143  cmin 11341  -cneg 11342   / cdiv 11771  cn 12122  2c2 12177  3c3 12178  0cn0 12378  cz 12465  cuz 12729  cexp 13965  abscabs 15138  cdvds 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403  df-numer 16643  df-denom 16644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator