MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuvw Structured version   Visualization version   GIF version

Theorem cbvreuvw 3383
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv 3387 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004.) (Revised by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvralvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuvw (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvreuvw
StepHypRef Expression
1 eleq1w 2822 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvralvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 630 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbveuvw 2607 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑦(𝑦𝐴𝜓))
5 df-reu 3072 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
6 df-reu 3072 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
74, 5, 63bitr4i 302 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2109  ∃!weu 2569  ∃!wreu 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-mo 2541  df-eu 2570  df-clel 2817  df-reu 3072
This theorem is referenced by:  reu8  3671  aceq1  9857  aceq2  9859  fin23lem27  10068  divalglem10  16092  lspsneu  20366  lshpsmreu  37102  wessf1ornlem  42675  fourierdlem50  43651
  Copyright terms: Public domain W3C validator