| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvreuvw | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv 3415 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbvrmovw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvreuvw | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2818 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | cbvrmovw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 4 | 3 | cbveuvw 2605 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 5 | df-reu 3365 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-reu 3365 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2568 ∃!wreu 3362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-clel 2810 df-reu 3365 |
| This theorem is referenced by: reu8 3721 aceq1 10136 aceq2 10138 fin23lem27 10347 divalglem10 16426 lspsneu 21089 lshpsmreu 39132 wessf1ornlem 45176 fourierdlem50 46152 upciclem1 49068 oppcup3lem 49106 |
| Copyright terms: Public domain | W3C validator |