|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvreuvw | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv 3431 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004.) (Revised by GG, 30-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| cbvrmovw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvreuvw | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2824 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | cbvrmovw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) | 
| 4 | 3 | cbveuvw 2605 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 5 | df-reu 3381 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-reu 3381 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 ∃!wreu 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-clel 2816 df-reu 3381 | 
| This theorem is referenced by: reu8 3739 aceq1 10157 aceq2 10159 fin23lem27 10368 divalglem10 16439 lspsneu 21125 lshpsmreu 39110 wessf1ornlem 45190 fourierdlem50 46171 upciclem1 48923 | 
| Copyright terms: Public domain | W3C validator |