MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuvw Structured version   Visualization version   GIF version

Theorem cbvreuvw 3368
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv 3390 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvrmovw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuvw (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvreuvw
StepHypRef Expression
1 eleq1w 2814 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvrmovw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbveuvw 2600 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑦(𝑦𝐴𝜓))
5 df-reu 3347 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
6 df-reu 3347 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
74, 5, 63bitr4i 303 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  ∃!weu 2563  ∃!wreu 3344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-eu 2564  df-clel 2806  df-reu 3347
This theorem is referenced by:  reu8  3692  aceq1  10008  aceq2  10010  fin23lem27  10219  divalglem10  16313  lspsneu  21061  lshpsmreu  39154  wessf1ornlem  45228  fourierdlem50  46200  upciclem1  49204  oppcup3lem  49244
  Copyright terms: Public domain W3C validator