MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrmov Structured version   Visualization version   GIF version

Theorem cbvrmov 3437
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvrmov.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmov (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrmov
StepHypRef Expression
1 nfv 1913 . 2 𝑦𝜑
2 nfv 1913 . 2 𝑥𝜓
3 cbvrmov.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrmo 3436 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator