![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvab | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
cbvab.1 | ⊢ Ⅎ𝑦𝜑 |
cbvab.2 | ⊢ Ⅎ𝑥𝜓 |
cbvab.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvab.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sbco2 2477 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
3 | cbvab.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
4 | cbvab.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbie 2468 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | sbbii 2027 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
7 | 2, 6 | bitr3i 269 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
8 | df-clab 2760 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
9 | df-clab 2760 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
10 | 7, 8, 9 | 3bitr4i 295 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
11 | 10 | eqriv 2776 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 Ⅎwnf 1746 [wsb 2015 ∈ wcel 2050 {cab 2759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 |
This theorem is referenced by: cbvabvOLD 2913 cbvrab 3412 cdeqab1 3673 cbvsbc 3711 cbvrabcsf 3824 rabsnifsb 4532 dfdmf 5615 dfrnf 5663 funfv2f 6580 abrexex2g 7477 bnj873 31840 ptrest 34329 poimirlem26 34356 poimirlem27 34357 |
Copyright terms: Public domain | W3C validator |