MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvab Structured version   Visualization version   GIF version

Theorem cbvab 2803
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Usage of the weaker cbvabw 2802 and cbvabv 2801 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvab.1 𝑦𝜑
cbvab.2 𝑥𝜓
cbvab.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvab {𝑥𝜑} = {𝑦𝜓}

Proof of Theorem cbvab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvab.1 . . . . 5 𝑦𝜑
21sbco2 2511 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
3 cbvab.2 . . . . . 6 𝑥𝜓
4 cbvab.3 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 2502 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
65sbbii 2079 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
72, 6bitr3i 277 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
8 df-clab 2710 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
9 df-clab 2710 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
107, 8, 93bitr4i 303 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1110eqriv 2728 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wnf 1784  [wsb 2067  wcel 2111  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723
This theorem is referenced by:  cbvrab  3435  cdeqab1  3731  cbvsbc  3776  cbvrabcsf  3895
  Copyright terms: Public domain W3C validator