MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvab Structured version   Visualization version   GIF version

Theorem cbvab 2815
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. Usage of the weaker cbvabw 2813 and cbvabv 2812 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvab.1 𝑦𝜑
cbvab.2 𝑥𝜓
cbvab.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvab {𝑥𝜑} = {𝑦𝜓}

Proof of Theorem cbvab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvab.1 . . . . 5 𝑦𝜑
21sbco2 2516 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
3 cbvab.2 . . . . . 6 𝑥𝜓
4 cbvab.3 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 2507 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
65sbbii 2082 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
72, 6bitr3i 276 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
8 df-clab 2717 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
9 df-clab 2717 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
107, 8, 93bitr4i 302 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1110eqriv 2736 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wnf 1789  [wsb 2070  wcel 2109  {cab 2716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-13 2373  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731
This theorem is referenced by:  cbvrab  3423  cdeqab1  3710  cbvsbc  3755  cbvrabcsf  3884
  Copyright terms: Public domain W3C validator