![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvab | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of the weaker cbvabw 2816 and cbvabv 2815 are preferred. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvab.1 | ⊢ Ⅎ𝑦𝜑 |
cbvab.2 | ⊢ Ⅎ𝑥𝜓 |
cbvab.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvab.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sbco2 2519 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
3 | cbvab.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
4 | cbvab.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbie 2510 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | sbbii 2076 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
7 | 2, 6 | bitr3i 277 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
8 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
9 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
11 | 10 | eqriv 2737 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1781 [wsb 2064 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 |
This theorem is referenced by: cbvrab 3487 cdeqab1 3794 cbvsbc 3840 cbvrabcsf 3969 |
Copyright terms: Public domain | W3C validator |