Proof of Theorem ceqsex3v
Step | Hyp | Ref
| Expression |
1 | | anass 468 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑))) |
2 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶))) |
3 | 2 | anbi1i 623 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) ∧ 𝜑)) |
4 | | df-3an 1087 |
. . . . . . 7
⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑)) |
5 | 4 | anbi2i 622 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑))) |
6 | 1, 3, 5 | 3bitr4i 302 |
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
7 | 6 | 2exbii 1852 |
. . . 4
⊢
(∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
8 | | 19.42vv 1962 |
. . . 4
⊢
(∃𝑦∃𝑧(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
9 | 7, 8 | bitri 274 |
. . 3
⊢
(∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
10 | 9 | exbii 1851 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
11 | | ceqsex3v.1 |
. . . 4
⊢ 𝐴 ∈ V |
12 | | ceqsex3v.4 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
13 | 12 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓))) |
14 | 13 | 2exbidv 1928 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓))) |
15 | 11, 14 | ceqsexv 3469 |
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓)) |
16 | | ceqsex3v.2 |
. . . 4
⊢ 𝐵 ∈ V |
17 | | ceqsex3v.3 |
. . . 4
⊢ 𝐶 ∈ V |
18 | | ceqsex3v.5 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
19 | | ceqsex3v.6 |
. . . 4
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
20 | 16, 17, 18, 19 | ceqsex2v 3473 |
. . 3
⊢
(∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓) ↔ 𝜃) |
21 | 15, 20 | bitri 274 |
. 2
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ 𝜃) |
22 | 10, 21 | bitri 274 |
1
⊢
(∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) |