Proof of Theorem ceqsex3v
| Step | Hyp | Ref
| Expression |
| 1 | | anass 468 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑))) |
| 2 | | 3anass 1095 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶))) |
| 3 | 2 | anbi1i 624 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) ∧ 𝜑)) |
| 4 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑)) |
| 5 | 4 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑))) |
| 6 | 1, 3, 5 | 3bitr4i 303 |
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
| 7 | 6 | 2exbii 1849 |
. . . 4
⊢
(∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
| 8 | | 19.42vv 1957 |
. . . 4
⊢
(∃𝑦∃𝑧(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
| 9 | 7, 8 | bitri 275 |
. . 3
⊢
(∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
| 10 | 9 | exbii 1848 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) |
| 11 | | ceqsex3v.1 |
. . 3
⊢ 𝐴 ∈ V |
| 12 | | ceqsex3v.4 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 13 | 12 | 3anbi3d 1444 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓))) |
| 14 | 13 | 2exbidv 1924 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓))) |
| 15 | 11, 14 | ceqsexv 3532 |
. 2
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓)) |
| 16 | | ceqsex3v.2 |
. . 3
⊢ 𝐵 ∈ V |
| 17 | | ceqsex3v.3 |
. . 3
⊢ 𝐶 ∈ V |
| 18 | | ceqsex3v.5 |
. . 3
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 19 | | ceqsex3v.6 |
. . 3
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
| 20 | 16, 17, 18, 19 | ceqsex2v 3536 |
. 2
⊢
(∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓) ↔ 𝜃) |
| 21 | 10, 15, 20 | 3bitri 297 |
1
⊢
(∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) |