Step | Hyp | Ref
| Expression |
1 | | dihopelvalcp.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | dihopelvalcp.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | dihopelvalcp.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | dihopelvalcp.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
5 | | dihopelvalcp.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | dihopelvalcp.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | dihopelvalcp.i |
. . . 4
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
8 | | dihopelvalcp.n |
. . . 4
⊢ 𝑁 = ((DIsoB‘𝐾)‘𝑊) |
9 | | dihopelvalcp.c |
. . . 4
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
10 | | dihopelvalcp.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
11 | | dihopelvalcp.y |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | dihvalcq 39257 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊)))) |
13 | 12 | eleq2d 2825 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))))) |
14 | | simp1 1135 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | | simp3l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
16 | | dihopelvalcp.v |
. . . . 5
⊢ 𝑉 = (LSubSp‘𝑈) |
17 | 2, 5, 6, 10, 9, 16 | diclss 39214 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐶‘𝑄) ∈ 𝑉) |
18 | 14, 15, 17 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶‘𝑄) ∈ 𝑉) |
19 | | simp1l 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ HL) |
20 | 19 | hllatd 37385 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ Lat) |
21 | | simp2l 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
22 | | simp1r 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐻) |
23 | 1, 6 | lhpbase 38019 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐵) |
25 | 1, 4 | latmcl 18167 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
26 | 20, 21, 24, 25 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
27 | 1, 2, 4 | latmle2 18192 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
28 | 20, 21, 24, 27 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
29 | 1, 2, 6, 10, 8, 16 | diblss 39191 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) |
30 | 14, 26, 28, 29 | syl12anc 834 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) |
31 | | dihopelvalcp.d |
. . . 4
⊢ + =
(+g‘𝑈) |
32 | 6, 10, 31, 16, 11 | dvhopellsm 39138 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶‘𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) → (〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) |
33 | 14, 18, 30, 32 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) |
34 | | dihopelvalcp.p |
. . . . . . . . 9
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
35 | | dihopelvalcp.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
36 | | dihopelvalcp.e |
. . . . . . . . 9
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
37 | | dihopelvalcp.g |
. . . . . . . . 9
⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
38 | | vex 3437 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
39 | | vex 3437 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
40 | 2, 5, 6, 34, 35, 36, 9, 37, 38, 39 | dicopelval2 39202 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ↔ (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸))) |
41 | 14, 15, 40 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ↔ (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸))) |
42 | | dihopelvalcp.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
43 | | dihopelvalcp.z |
. . . . . . . . 9
⊢ 𝑍 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
44 | 1, 2, 6, 35, 42, 43, 8 | dibopelval3 39169 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊)) ↔ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) |
45 | 14, 26, 28, 44 | syl12anc 834 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊)) ↔ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) |
46 | 41, 45 | anbi12d 631 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)))) |
47 | 46 | anbi1d 630 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) |
48 | | simpl1 1190 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
49 | | simprll 776 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦‘𝐺)) |
50 | | simprlr 777 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦 ∈ 𝐸) |
51 | 2, 5, 6, 34 | lhpocnel2 38040 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
52 | 48, 51 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
53 | | simpl3l 1227 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
54 | 2, 5, 6, 35, 37 | ltrniotacl 38600 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
55 | 48, 52, 53, 54 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺 ∈ 𝑇) |
56 | 6, 35, 36 | tendocl 38788 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑦‘𝐺) ∈ 𝑇) |
57 | 48, 50, 55, 56 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦‘𝐺) ∈ 𝑇) |
58 | 49, 57 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 ∈ 𝑇) |
59 | | simprll 776 |
. . . . . . . . . . . 12
⊢ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧 ∈ 𝑇) |
60 | 59 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧 ∈ 𝑇) |
61 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍) |
62 | 1, 6, 35, 36, 43 | tendo0cl 38811 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑍 ∈ 𝐸) |
63 | 48, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍 ∈ 𝐸) |
64 | 61, 63 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 ∈ 𝐸) |
65 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
66 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
67 | 6, 35, 36, 10, 65, 31, 66 | dvhopvadd 39114 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑧 ∈ 𝑇 ∧ 𝑤 ∈ 𝐸)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉) |
68 | 48, 58, 50, 60, 64, 67 | syl122anc 1378 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉) |
69 | | dihopelvalcp.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑎‘ℎ) ∘ (𝑏‘ℎ)))) |
70 | 6, 35, 36, 10, 65, 69, 66 | dvhfplusr 39105 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = 𝑂) |
71 | 48, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) →
(+g‘(Scalar‘𝑈)) = 𝑂) |
72 | 71 | oveqd 7301 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤)) |
73 | 72 | opeq2d 4812 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉) |
74 | 68, 73 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉) |
75 | 74 | eqeq2d 2750 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉)) |
76 | | dihopelvalcp.f |
. . . . . . . . . 10
⊢ 𝐹 ∈ V |
77 | | dihopelvalcp.s |
. . . . . . . . . 10
⊢ 𝑆 ∈ V |
78 | 76, 77 | opth 5392 |
. . . . . . . . 9
⊢
(〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑦𝑂𝑤))) |
79 | 61 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍)) |
80 | 1, 6, 35, 36, 43, 69 | tendo0plr 38813 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐸) → (𝑦𝑂𝑍) = 𝑦) |
81 | 48, 50, 80 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦) |
82 | 79, 81 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦) |
83 | 82 | eqeq2d 2750 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦)) |
84 | 83 | anbi2d 629 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
85 | 78, 84 | syl5bb 283 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
86 | 75, 85 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
87 | 86 | pm5.32da 579 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)))) |
88 | | simplll 772 |
. . . . . . . . . . 11
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦‘𝐺)) |
89 | 88 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦‘𝐺)) |
90 | | simprrr 779 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦) |
91 | 90 | fveq1d 6785 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺) = (𝑦‘𝐺)) |
92 | 89, 91 | eqtr4d 2782 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆‘𝐺)) |
93 | 90 | eqcomd 2745 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆) |
94 | | coass 6173 |
. . . . . . . . . . 11
⊢ ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧) = (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) |
95 | | simpl1 1190 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
96 | | simpllr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑦 ∈ 𝐸) |
97 | 96 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 ∈ 𝐸) |
98 | 90, 97 | eqeltrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 ∈ 𝐸) |
99 | 55 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐺 ∈ 𝑇) |
100 | 6, 35, 36 | tendocl 38788 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑆‘𝐺) ∈ 𝑇) |
101 | 95, 98, 99, 100 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺) ∈ 𝑇) |
102 | 1, 6, 35 | ltrn1o 38145 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) |
103 | 95, 101, 102 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) |
104 | | f1ococnv1 6754 |
. . . . . . . . . . . . . 14
⊢ ((𝑆‘𝐺):𝐵–1-1-onto→𝐵 → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) |
106 | 105 | coeq1d 5773 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧)) |
107 | 59 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 ∈ 𝑇) |
108 | 1, 6, 35 | ltrn1o 38145 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → 𝑧:𝐵–1-1-onto→𝐵) |
109 | 95, 107, 108 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵–1-1-onto→𝐵) |
110 | | f1of 6725 |
. . . . . . . . . . . . 13
⊢ (𝑧:𝐵–1-1-onto→𝐵 → 𝑧:𝐵⟶𝐵) |
111 | | fcoi2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑧:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧) |
112 | 109, 110,
111 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧) |
113 | 106, 112 | eqtr2d 2780 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧)) |
114 | | simprrl 778 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥 ∘ 𝑧)) |
115 | 92 | coeq1d 5773 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑥 ∘ 𝑧) = ((𝑆‘𝐺) ∘ 𝑧)) |
116 | 114, 115 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆‘𝐺) ∘ 𝑧)) |
117 | 116 | coeq1d 5773 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐹 ∘ ◡(𝑆‘𝐺)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) |
118 | 6, 35 | ltrncnv 38167 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇) → ◡(𝑆‘𝐺) ∈ 𝑇) |
119 | 95, 101, 118 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ◡(𝑆‘𝐺) ∈ 𝑇) |
120 | 6, 35 | ltrnco 38740 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) |
121 | 95, 101, 107, 120 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) |
122 | 6, 35 | ltrncom 38759 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡(𝑆‘𝐺) ∈ 𝑇 ∧ ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) → (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) |
123 | 95, 119, 121, 122 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) |
124 | 117, 123 | eqtr4d 2782 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐹 ∘ ◡(𝑆‘𝐺)) = (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧))) |
125 | 94, 113, 124 | 3eqtr4a 2805 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) |
126 | | simplrr 775 |
. . . . . . . . . . 11
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍) |
127 | 126 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍) |
128 | 125, 127 | jca 512 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) |
129 | 92, 93, 128 | jca31 515 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) |
130 | 129 | ex 413 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)))) |
131 | 130 | pm4.71rd 563 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))))) |
132 | 87, 131 | bitrd 278 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))))) |
133 | | simprrl 778 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥 ∘ 𝑧)) |
134 | | simpll1 1211 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
135 | 88 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦‘𝐺)) |
136 | 96 | adantl 482 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 ∈ 𝐸) |
137 | 134, 51 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
138 | | simpl3l 1227 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
139 | 138 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
140 | 134, 137,
139, 54 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐺 ∈ 𝑇) |
141 | 134, 136,
140, 56 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑦‘𝐺) ∈ 𝑇) |
142 | 135, 141 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 ∈ 𝑇) |
143 | 59 | ad2antrl 725 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 ∈ 𝑇) |
144 | 6, 35 | ltrnco 38740 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (𝑥 ∘ 𝑧) ∈ 𝑇) |
145 | 134, 142,
143, 144 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑥 ∘ 𝑧) ∈ 𝑇) |
146 | 133, 145 | eqeltrd 2840 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 ∈ 𝑇) |
147 | | simpl1l 1223 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL) |
148 | 147 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL) |
149 | 148 | hllatd 37385 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat) |
150 | 1, 6, 35, 42 | trlcl 38185 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → (𝑅‘𝑧) ∈ 𝐵) |
151 | 134, 143,
150 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ∈ 𝐵) |
152 | | simpl2l 1225 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋 ∈ 𝐵) |
153 | 152 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑋 ∈ 𝐵) |
154 | | simpl1r 1224 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊 ∈ 𝐻) |
155 | 154 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑊 ∈ 𝐻) |
156 | 155, 23 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑊 ∈ 𝐵) |
157 | 149, 153,
156, 25 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
158 | | simprlr 777 |
. . . . . . . . . . 11
⊢ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) |
159 | 158 | ad2antrl 725 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) |
160 | 1, 2, 4 | latmle1 18191 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑋) |
161 | 149, 153,
156, 160 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 ∧ 𝑊) ≤ 𝑋) |
162 | 1, 2, 149, 151, 157, 153, 159, 161 | lattrd 18173 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ≤ 𝑋) |
163 | 146, 136,
162 | jca31 515 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) |
164 | | simprll 776 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆‘𝐺)) |
165 | 164 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑥 = (𝑆‘𝐺)) |
166 | | simprlr 777 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆) |
167 | 166 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑦 = 𝑆) |
168 | 167 | fveq1d 6785 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑦‘𝐺) = (𝑆‘𝐺)) |
169 | 165, 168 | eqtr4d 2782 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑥 = (𝑦‘𝐺)) |
170 | | simprlr 777 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑦 ∈ 𝐸) |
171 | 169, 170 | jca 512 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸)) |
172 | | simprrl 778 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) |
173 | 172 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) |
174 | | simpll1 1211 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
175 | | simprll 776 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 ∈ 𝑇) |
176 | 167, 170 | eqeltrrd 2841 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑆 ∈ 𝐸) |
177 | 174, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
178 | 138 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
179 | 174, 177,
178, 54 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐺 ∈ 𝑇) |
180 | 174, 176,
179, 100 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑆‘𝐺) ∈ 𝑇) |
181 | 174, 180,
118 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ◡(𝑆‘𝐺) ∈ 𝑇) |
182 | 6, 35 | ltrnco 38740 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ◡(𝑆‘𝐺) ∈ 𝑇) → (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) |
183 | 174, 175,
181, 182 | syl3anc 1370 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) |
184 | 173, 183 | eqeltrd 2840 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑧 ∈ 𝑇) |
185 | | simprr 770 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ 𝑋) |
186 | 2, 6, 35, 42 | trlle 38205 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → (𝑅‘𝑧) ≤ 𝑊) |
187 | 174, 184,
186 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ 𝑊) |
188 | 147 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐾 ∈ HL) |
189 | 188 | hllatd 37385 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐾 ∈ Lat) |
190 | 174, 184,
150 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ∈ 𝐵) |
191 | 152 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
192 | 154 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑊 ∈ 𝐻) |
193 | 192, 23 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑊 ∈ 𝐵) |
194 | 1, 2, 4 | latlem12 18193 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝑧) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑅‘𝑧) ≤ 𝑋 ∧ (𝑅‘𝑧) ≤ 𝑊) ↔ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊))) |
195 | 189, 190,
191, 193, 194 | syl13anc 1371 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (((𝑅‘𝑧) ≤ 𝑋 ∧ (𝑅‘𝑧) ≤ 𝑊) ↔ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊))) |
196 | 185, 187,
195 | mpbi2and 709 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) |
197 | | simprrr 779 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍) |
198 | 197 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑤 = 𝑍) |
199 | 184, 196,
198 | jca31 515 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) |
200 | 174, 180,
102 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) |
201 | 200, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) |
202 | 201 | coeq2d 5774 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺))) = (𝐹 ∘ ( I ↾ 𝐵))) |
203 | 1, 6, 35 | ltrn1o 38145 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
204 | 174, 175,
203 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹:𝐵–1-1-onto→𝐵) |
205 | | f1of 6725 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) |
206 | | fcoi1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
207 | 204, 205,
206 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
208 | 202, 207 | eqtr2d 2780 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)))) |
209 | | coass 6173 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺)) = (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺))) |
210 | 208, 209 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) |
211 | 6, 35 | ltrncom 38759 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇 ∧ (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) → ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺))) = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) |
212 | 174, 180,
183, 211 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺))) = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) |
213 | 210, 212 | eqtr4d 2782 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺)))) |
214 | 165, 173 | coeq12d 5776 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑥 ∘ 𝑧) = ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺)))) |
215 | 213, 214 | eqtr4d 2782 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = (𝑥 ∘ 𝑧)) |
216 | 167 | eqcomd 2745 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑆 = 𝑦) |
217 | 215, 216 | jca 512 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) |
218 | 171, 199,
217 | jca31 515 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) |
219 | 163, 218 | impbida 798 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
220 | 219 | pm5.32da 579 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
221 | | df-3an 1088 |
. . . . . 6
⊢ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
222 | 220, 221 | bitr4di 289 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
223 | 47, 132, 222 | 3bitrd 305 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
224 | 223 | 4exbidv 1930 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) |
225 | | fvex 6796 |
. . . 4
⊢ (𝑆‘𝐺) ∈ V |
226 | 225 | cnvex 7781 |
. . . . 5
⊢ ◡(𝑆‘𝐺) ∈ V |
227 | 76, 226 | coex 7786 |
. . . 4
⊢ (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ V |
228 | 35 | fvexi 6797 |
. . . . . 6
⊢ 𝑇 ∈ V |
229 | 228 | mptex 7108 |
. . . . 5
⊢ (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
230 | 43, 229 | eqeltri 2836 |
. . . 4
⊢ 𝑍 ∈ V |
231 | | biidd 261 |
. . . 4
⊢ (𝑥 = (𝑆‘𝐺) → (((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
232 | | eleq1 2827 |
. . . . . 6
⊢ (𝑦 = 𝑆 → (𝑦 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) |
233 | 232 | anbi2d 629 |
. . . . 5
⊢ (𝑦 = 𝑆 → ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ↔ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸))) |
234 | 233 | anbi1d 630 |
. . . 4
⊢ (𝑦 = 𝑆 → (((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) |
235 | | fveq2 6783 |
. . . . . 6
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → (𝑅‘𝑧) = (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺)))) |
236 | 235 | breq1d 5085 |
. . . . 5
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → ((𝑅‘𝑧) ≤ 𝑋 ↔ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋)) |
237 | 236 | anbi2d 629 |
. . . 4
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → (((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |
238 | | biidd 261 |
. . . 4
⊢ (𝑤 = 𝑍 → (((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |
239 | 225, 77, 227, 230, 231, 234, 237, 238 | ceqsex4v 3486 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋)) |
240 | 224, 239 | bitrdi 287 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |
241 | 13, 33, 240 | 3bitrd 305 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |