Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalcpre Structured version   Visualization version   GIF version

Theorem dihopelvalcpre 38814
Description: Member of value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.)
Hypotheses
Ref Expression
dihopelvalcp.b 𝐵 = (Base‘𝐾)
dihopelvalcp.l = (le‘𝐾)
dihopelvalcp.j = (join‘𝐾)
dihopelvalcp.m = (meet‘𝐾)
dihopelvalcp.a 𝐴 = (Atoms‘𝐾)
dihopelvalcp.h 𝐻 = (LHyp‘𝐾)
dihopelvalcp.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihopelvalcp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihopelvalcp.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihopelvalcp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihopelvalcp.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihopelvalcp.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihopelvalcp.f 𝐹 ∈ V
dihopelvalcp.s 𝑆 ∈ V
dihopelvalcp.z 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
dihopelvalcp.n 𝑁 = ((DIsoB‘𝐾)‘𝑊)
dihopelvalcp.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihopelvalcp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihopelvalcp.d + = (+g𝑈)
dihopelvalcp.v 𝑉 = (LSubSp‘𝑈)
dihopelvalcp.y = (LSSum‘𝑈)
dihopelvalcp.o 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
Assertion
Ref Expression
dihopelvalcpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑃,𝑔   𝑎,𝑏,𝐸   𝑔,,𝐻   𝑔,𝑎,,𝐾,𝑏   𝐵,   𝑇,𝑎,𝑏,𝑔,   𝑊,𝑎,𝑏,𝑔,   𝑄,𝑔
Allowed substitution hints:   𝐴(,𝑎,𝑏)   𝐵(𝑔,𝑎,𝑏)   𝐶(𝑔,,𝑎,𝑏)   𝑃(,𝑎,𝑏)   + (𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑄(,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑔,,𝑎,𝑏)   𝑈(𝑔,,𝑎,𝑏)   𝐸(𝑔,)   𝐹(𝑔,,𝑎,𝑏)   𝐺(𝑔,,𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐼(𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   (,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑁(𝑔,,𝑎,𝑏)   𝑂(𝑔,,𝑎,𝑏)   𝑉(𝑔,,𝑎,𝑏)   𝑋(𝑔,,𝑎,𝑏)   𝑍(𝑔,,𝑎,𝑏)

Proof of Theorem dihopelvalcpre
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihopelvalcp.b . . . 4 𝐵 = (Base‘𝐾)
2 dihopelvalcp.l . . . 4 = (le‘𝐾)
3 dihopelvalcp.j . . . 4 = (join‘𝐾)
4 dihopelvalcp.m . . . 4 = (meet‘𝐾)
5 dihopelvalcp.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihopelvalcp.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihopelvalcp.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihopelvalcp.n . . . 4 𝑁 = ((DIsoB‘𝐾)‘𝑊)
9 dihopelvalcp.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihopelvalcp.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihopelvalcp.y . . . 4 = (LSSum‘𝑈)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dihvalcq 38802 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐼𝑋) = ((𝐶𝑄) (𝑁‘(𝑋 𝑊))))
1312eleq2d 2838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊)))))
14 simp1 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
16 dihopelvalcp.v . . . . 5 𝑉 = (LSubSp‘𝑈)
172, 5, 6, 10, 9, 16diclss 38759 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐶𝑄) ∈ 𝑉)
1814, 15, 17syl2anc 588 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐶𝑄) ∈ 𝑉)
19 simp1l 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
2019hllatd 36930 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
21 simp2l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
22 simp1r 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
231, 6lhpbase 37564 . . . . . 6 (𝑊𝐻𝑊𝐵)
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
251, 4latmcl 17718 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2620, 21, 24, 25syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
271, 2, 4latmle2 17743 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2820, 21, 24, 27syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) 𝑊)
291, 2, 6, 10, 8, 16diblss 38736 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
3014, 26, 28, 29syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
31 dihopelvalcp.d . . . 4 + = (+g𝑈)
326, 10, 31, 16, 11dvhopellsm 38683 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 𝑊)) ∈ 𝑉) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
3314, 18, 30, 32syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
34 dihopelvalcp.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
35 dihopelvalcp.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
36 dihopelvalcp.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
37 dihopelvalcp.g . . . . . . . . 9 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
38 vex 3414 . . . . . . . . 9 𝑥 ∈ V
39 vex 3414 . . . . . . . . 9 𝑦 ∈ V
402, 5, 6, 34, 35, 36, 9, 37, 38, 39dicopelval2 38747 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
4114, 15, 40syl2anc 588 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
42 dihopelvalcp.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
43 dihopelvalcp.z . . . . . . . . 9 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
441, 2, 6, 35, 42, 43, 8dibopelval3 38714 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4514, 26, 28, 44syl12anc 836 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4641, 45anbi12d 634 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ↔ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))))
4746anbi1d 633 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
48 simpl1 1189 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
49 simprll 779 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦𝐺))
50 simprlr 780 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦𝐸)
512, 5, 6, 34lhpocnel2 37585 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5248, 51syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
53 simpl3l 1226 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
542, 5, 6, 35, 37ltrniotacl 38145 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5548, 52, 53, 54syl3anc 1369 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺𝑇)
566, 35, 36tendocl 38333 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸𝐺𝑇) → (𝑦𝐺) ∈ 𝑇)
5748, 50, 55, 56syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝐺) ∈ 𝑇)
5849, 57eqeltrd 2853 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥𝑇)
59 simprll 779 . . . . . . . . . . . 12 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧𝑇)
6059adantl 486 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧𝑇)
61 simprrr 782 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
621, 6, 35, 36, 43tendo0cl 38356 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑍𝐸)
6348, 62syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍𝐸)
6461, 63eqeltrd 2853 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤𝐸)
65 eqid 2759 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
66 eqid 2759 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
676, 35, 36, 10, 65, 31, 66dvhopvadd 38659 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝐸) ∧ (𝑧𝑇𝑤𝐸)) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
6848, 58, 50, 60, 64, 67syl122anc 1377 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
69 dihopelvalcp.o . . . . . . . . . . . . . 14 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
706, 35, 36, 10, 65, 69, 66dvhfplusr 38650 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = 𝑂)
7148, 70syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (+g‘(Scalar‘𝑈)) = 𝑂)
7271oveqd 7165 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤))
7372opeq2d 4768 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7468, 73eqtrd 2794 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7574eqeq2d 2770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩))
76 dihopelvalcp.f . . . . . . . . . 10 𝐹 ∈ V
77 dihopelvalcp.s . . . . . . . . . 10 𝑆 ∈ V
7876, 77opth 5334 . . . . . . . . 9 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)))
7961oveq2d 7164 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍))
801, 6, 35, 36, 43, 69tendo0plr 38358 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸) → (𝑦𝑂𝑍) = 𝑦)
8148, 50, 80syl2anc 588 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦)
8279, 81eqtrd 2794 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦)
8382eqeq2d 2770 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦))
8483anbi2d 632 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8578, 84syl5bb 286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8675, 85bitrd 282 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8786pm5.32da 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))))
88 simplll 775 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦𝐺))
8988adantl 486 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
90 simprrr 782 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦)
9190fveq1d 6658 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) = (𝑦𝐺))
9289, 91eqtr4d 2797 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆𝐺))
9390eqcomd 2765 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆)
94 coass 6093 . . . . . . . . . . 11 (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧))
95 simpl1 1189 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
96 simpllr 776 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑦𝐸)
9796adantl 486 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
9890, 97eqeltrd 2853 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆𝐸)
9955adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
1006, 35, 36tendocl 38333 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
10195, 98, 99, 100syl3anc 1369 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1021, 6, 35ltrn1o 37690 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺):𝐵1-1-onto𝐵)
10395, 101, 102syl2anc 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺):𝐵1-1-onto𝐵)
104 f1ococnv1 6628 . . . . . . . . . . . . . 14 ((𝑆𝐺):𝐵1-1-onto𝐵 → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
105103, 104syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
106105coeq1d 5699 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧))
10759ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1081, 6, 35ltrn1o 37690 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → 𝑧:𝐵1-1-onto𝐵)
10995, 107, 108syl2anc 588 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵1-1-onto𝐵)
110 f1of 6600 . . . . . . . . . . . . 13 (𝑧:𝐵1-1-onto𝐵𝑧:𝐵𝐵)
111 fcoi2 6536 . . . . . . . . . . . . 13 (𝑧:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
112109, 110, 1113syl 18 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
113106, 112eqtr2d 2795 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧))
114 simprrl 781 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
11592coeq1d 5699 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) = ((𝑆𝐺) ∘ 𝑧))
116114, 115eqtrd 2794 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆𝐺) ∘ 𝑧))
117116coeq1d 5699 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
1186, 35ltrncnv 37712 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺) ∈ 𝑇)
11995, 101, 118syl2anc 588 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1206, 35ltrnco 38285 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇𝑧𝑇) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
12195, 101, 107, 120syl3anc 1369 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
1226, 35ltrncom 38304 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
12395, 119, 121, 122syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
124117, 123eqtr4d 2797 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)))
12594, 113, 1243eqtr4a 2820 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹(𝑆𝐺)))
126 simplrr 778 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍)
127126adantl 486 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍)
128125, 127jca 516 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))
12992, 93, 128jca31 519 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)))
130129ex 417 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))))
131130pm4.71rd 567 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
13287, 131bitrd 282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
133 simprrl 781 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
134 simpll1 1210 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13588adantl 486 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
13696adantl 486 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
137134, 51syl 17 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
138 simpl3l 1226 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
139138adantr 485 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
140134, 137, 139, 54syl3anc 1369 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
141134, 136, 140, 56syl3anc 1369 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑦𝐺) ∈ 𝑇)
142135, 141eqeltrd 2853 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥𝑇)
14359ad2antrl 728 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1446, 35ltrnco 38285 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑧𝑇) → (𝑥𝑧) ∈ 𝑇)
145134, 142, 143, 144syl3anc 1369 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) ∈ 𝑇)
146133, 145eqeltrd 2853 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹𝑇)
147 simpl1l 1222 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL)
148147adantr 485 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL)
149148hllatd 36930 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat)
1501, 6, 35, 42trlcl 37730 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) ∈ 𝐵)
151134, 143, 150syl2anc 588 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) ∈ 𝐵)
152 simpl2l 1224 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋𝐵)
153152adantr 485 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑋𝐵)
154 simpl1r 1223 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊𝐻)
155154adantr 485 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐻)
156155, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐵)
157149, 153, 156, 25syl3anc 1369 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) ∈ 𝐵)
158 simprlr 780 . . . . . . . . . . 11 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅𝑧) (𝑋 𝑊))
159158ad2antrl 728 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) (𝑋 𝑊))
1601, 2, 4latmle1 17742 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑋)
161149, 153, 156, 160syl3anc 1369 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) 𝑋)
1621, 2, 149, 151, 157, 153, 159, 161lattrd 17724 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) 𝑋)
163146, 136, 162jca31 519 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))
164 simprll 779 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆𝐺))
165164adantr 485 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑆𝐺))
166 simprlr 780 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆)
167166adantr 485 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦 = 𝑆)
168167fveq1d 6658 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑦𝐺) = (𝑆𝐺))
169165, 168eqtr4d 2797 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑦𝐺))
170 simprlr 780 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦𝐸)
171169, 170jca 516 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸))
172 simprrl 781 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹(𝑆𝐺)))
173172adantr 485 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧 = (𝐹(𝑆𝐺)))
174 simpll1 1210 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
175 simprll 779 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹𝑇)
176167, 170eqeltrrd 2854 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆𝐸)
177174, 51syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
178138adantr 485 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
179174, 177, 178, 54syl3anc 1369 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐺𝑇)
180174, 176, 179, 100syl3anc 1369 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
181174, 180, 118syl2anc 588 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
1826, 35ltrnco 38285 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇(𝑆𝐺) ∈ 𝑇) → (𝐹(𝑆𝐺)) ∈ 𝑇)
183174, 175, 181, 182syl3anc 1369 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹(𝑆𝐺)) ∈ 𝑇)
184173, 183eqeltrd 2853 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧𝑇)
185 simprr 773 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑋)
1862, 6, 35, 42trlle 37750 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) 𝑊)
187174, 184, 186syl2anc 588 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑊)
188147adantr 485 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ HL)
189188hllatd 36930 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ Lat)
190174, 184, 150syl2anc 588 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) ∈ 𝐵)
191152adantr 485 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑋𝐵)
192154adantr 485 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐻)
193192, 23syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐵)
1941, 2, 4latlem12 17744 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((𝑅𝑧) ∈ 𝐵𝑋𝐵𝑊𝐵)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
195189, 190, 191, 193, 194syl13anc 1370 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
196185, 187, 195mpbi2and 712 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) (𝑋 𝑊))
197 simprrr 782 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
198197adantr 485 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑤 = 𝑍)
199184, 196, 198jca31 519 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))
200174, 180, 102syl2anc 588 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺):𝐵1-1-onto𝐵)
201200, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
202201coeq2d 5700 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))) = (𝐹 ∘ ( I ↾ 𝐵)))
2031, 6, 35ltrn1o 37690 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
204174, 175, 203syl2anc 588 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹:𝐵1-1-onto𝐵)
205 f1of 6600 . . . . . . . . . . . . . . 15 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
206 fcoi1 6535 . . . . . . . . . . . . . . 15 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
207204, 205, 2063syl 18 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
208202, 207eqtr2d 2795 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))))
209 coass 6093 . . . . . . . . . . . . 13 ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)) = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺)))
210208, 209eqtr4di 2812 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
2116, 35ltrncom 38304 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ (𝐹(𝑆𝐺)) ∈ 𝑇) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
212174, 180, 183, 211syl3anc 1369 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
213210, 212eqtr4d 2797 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
214165, 173coeq12d 5702 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥𝑧) = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
215213, 214eqtr4d 2797 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝑥𝑧))
216167eqcomd 2765 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆 = 𝑦)
217215, 216jca 516 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))
218171, 199, 217jca31 519 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
219163, 218impbida 801 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
220219pm5.32da 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
221 df-3an 1087 . . . . . 6 (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
222220, 221bitr4di 293 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
22347, 132, 2223bitrd 309 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
2242234exbidv 1928 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
225 fvex 6669 . . . 4 (𝑆𝐺) ∈ V
226225cnvex 7633 . . . . 5 (𝑆𝐺) ∈ V
22776, 226coex 7638 . . . 4 (𝐹(𝑆𝐺)) ∈ V
22835fvexi 6670 . . . . . 6 𝑇 ∈ V
229228mptex 6975 . . . . 5 (𝑇 ↦ ( I ↾ 𝐵)) ∈ V
23043, 229eqeltri 2849 . . . 4 𝑍 ∈ V
231 biidd 265 . . . 4 (𝑥 = (𝑆𝐺) → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
232 eleq1 2840 . . . . . 6 (𝑦 = 𝑆 → (𝑦𝐸𝑆𝐸))
233232anbi2d 632 . . . . 5 (𝑦 = 𝑆 → ((𝐹𝑇𝑦𝐸) ↔ (𝐹𝑇𝑆𝐸)))
234233anbi1d 633 . . . 4 (𝑦 = 𝑆 → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋)))
235 fveq2 6656 . . . . . 6 (𝑧 = (𝐹(𝑆𝐺)) → (𝑅𝑧) = (𝑅‘(𝐹(𝑆𝐺))))
236235breq1d 5040 . . . . 5 (𝑧 = (𝐹(𝑆𝐺)) → ((𝑅𝑧) 𝑋 ↔ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
237236anbi2d 632 . . . 4 (𝑧 = (𝐹(𝑆𝐺)) → (((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
238 biidd 265 . . . 4 (𝑤 = 𝑍 → (((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
239225, 77, 227, 230, 231, 234, 237, 238ceqsex4v 3464 . . 3 (∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
240224, 239syl6bb 291 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
24113, 33, 2403bitrd 309 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wex 1782  wcel 2112  Vcvv 3410  cop 4526   class class class wbr 5030  cmpt 5110   I cid 5427  ccnv 5521  cres 5524  ccom 5526  wf 6329  1-1-ontowf1o 6332  cfv 6333  crio 7105  (class class class)co 7148  cmpo 7150  Basecbs 16531  +gcplusg 16613  Scalarcsca 16616  lecple 16620  occoc 16621  joincjn 17610  meetcmee 17611  Latclat 17711  LSSumclsm 18816  LSubSpclss 19761  Atomscatm 36829  HLchlt 36916  LHypclh 37550  LTrncltrn 37667  trLctrl 37724  TEndoctendo 38318  DVecHcdvh 38644  DIsoBcdib 38704  DIsoCcdic 38738  DIsoHcdih 38794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-riotaBAD 36519
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-tpos 7900  df-undef 7947  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-oadd 8114  df-er 8297  df-map 8416  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-n0 11925  df-z 12011  df-uz 12273  df-fz 12930  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-sca 16629  df-vsca 16630  df-0g 16763  df-proset 17594  df-poset 17612  df-plt 17624  df-lub 17640  df-glb 17641  df-join 17642  df-meet 17643  df-p0 17705  df-p1 17706  df-lat 17712  df-clat 17774  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-grp 18162  df-minusg 18163  df-sbg 18164  df-subg 18333  df-cntz 18504  df-lsm 18818  df-cmn 18965  df-abl 18966  df-mgp 19298  df-ur 19310  df-ring 19357  df-oppr 19434  df-dvdsr 19452  df-unit 19453  df-invr 19483  df-dvr 19494  df-drng 19562  df-lmod 19694  df-lss 19762  df-lsp 19802  df-lvec 19933  df-oposet 36742  df-ol 36744  df-oml 36745  df-covers 36832  df-ats 36833  df-atl 36864  df-cvlat 36888  df-hlat 36917  df-llines 37064  df-lplanes 37065  df-lvols 37066  df-lines 37067  df-psubsp 37069  df-pmap 37070  df-padd 37362  df-lhyp 37554  df-laut 37555  df-ldil 37670  df-ltrn 37671  df-trl 37725  df-tendo 38321  df-edring 38323  df-disoa 38595  df-dvech 38645  df-dib 38705  df-dic 38739  df-dih 38795
This theorem is referenced by:  dihopelvalc  38815
  Copyright terms: Public domain W3C validator