Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalcpre Structured version   Visualization version   GIF version

Theorem dihopelvalcpre 41205
Description: Member of value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.)
Hypotheses
Ref Expression
dihopelvalcp.b 𝐵 = (Base‘𝐾)
dihopelvalcp.l = (le‘𝐾)
dihopelvalcp.j = (join‘𝐾)
dihopelvalcp.m = (meet‘𝐾)
dihopelvalcp.a 𝐴 = (Atoms‘𝐾)
dihopelvalcp.h 𝐻 = (LHyp‘𝐾)
dihopelvalcp.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihopelvalcp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihopelvalcp.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihopelvalcp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihopelvalcp.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihopelvalcp.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihopelvalcp.f 𝐹 ∈ V
dihopelvalcp.s 𝑆 ∈ V
dihopelvalcp.z 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
dihopelvalcp.n 𝑁 = ((DIsoB‘𝐾)‘𝑊)
dihopelvalcp.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihopelvalcp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihopelvalcp.d + = (+g𝑈)
dihopelvalcp.v 𝑉 = (LSubSp‘𝑈)
dihopelvalcp.y = (LSSum‘𝑈)
dihopelvalcp.o 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
Assertion
Ref Expression
dihopelvalcpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑃,𝑔   𝑎,𝑏,𝐸   𝑔,,𝐻   𝑔,𝑎,,𝐾,𝑏   𝐵,   𝑇,𝑎,𝑏,𝑔,   𝑊,𝑎,𝑏,𝑔,   𝑄,𝑔
Allowed substitution hints:   𝐴(,𝑎,𝑏)   𝐵(𝑔,𝑎,𝑏)   𝐶(𝑔,,𝑎,𝑏)   𝑃(,𝑎,𝑏)   + (𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑄(,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑔,,𝑎,𝑏)   𝑈(𝑔,,𝑎,𝑏)   𝐸(𝑔,)   𝐹(𝑔,,𝑎,𝑏)   𝐺(𝑔,,𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐼(𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   (,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑁(𝑔,,𝑎,𝑏)   𝑂(𝑔,,𝑎,𝑏)   𝑉(𝑔,,𝑎,𝑏)   𝑋(𝑔,,𝑎,𝑏)   𝑍(𝑔,,𝑎,𝑏)

Proof of Theorem dihopelvalcpre
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihopelvalcp.b . . . 4 𝐵 = (Base‘𝐾)
2 dihopelvalcp.l . . . 4 = (le‘𝐾)
3 dihopelvalcp.j . . . 4 = (join‘𝐾)
4 dihopelvalcp.m . . . 4 = (meet‘𝐾)
5 dihopelvalcp.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihopelvalcp.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihopelvalcp.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihopelvalcp.n . . . 4 𝑁 = ((DIsoB‘𝐾)‘𝑊)
9 dihopelvalcp.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihopelvalcp.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihopelvalcp.y . . . 4 = (LSSum‘𝑈)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dihvalcq 41193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐼𝑋) = ((𝐶𝑄) (𝑁‘(𝑋 𝑊))))
1312eleq2d 2830 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊)))))
14 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3l 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
16 dihopelvalcp.v . . . . 5 𝑉 = (LSubSp‘𝑈)
172, 5, 6, 10, 9, 16diclss 41150 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐶𝑄) ∈ 𝑉)
1814, 15, 17syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐶𝑄) ∈ 𝑉)
19 simp1l 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
2019hllatd 39320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
21 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
22 simp1r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
231, 6lhpbase 39955 . . . . . 6 (𝑊𝐻𝑊𝐵)
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
251, 4latmcl 18510 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2620, 21, 24, 25syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
271, 2, 4latmle2 18535 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2820, 21, 24, 27syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) 𝑊)
291, 2, 6, 10, 8, 16diblss 41127 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
3014, 26, 28, 29syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
31 dihopelvalcp.d . . . 4 + = (+g𝑈)
326, 10, 31, 16, 11dvhopellsm 41074 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 𝑊)) ∈ 𝑉) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
3314, 18, 30, 32syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
34 dihopelvalcp.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
35 dihopelvalcp.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
36 dihopelvalcp.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
37 dihopelvalcp.g . . . . . . . . 9 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
38 vex 3492 . . . . . . . . 9 𝑥 ∈ V
39 vex 3492 . . . . . . . . 9 𝑦 ∈ V
402, 5, 6, 34, 35, 36, 9, 37, 38, 39dicopelval2 41138 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
4114, 15, 40syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
42 dihopelvalcp.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
43 dihopelvalcp.z . . . . . . . . 9 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
441, 2, 6, 35, 42, 43, 8dibopelval3 41105 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4514, 26, 28, 44syl12anc 836 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4641, 45anbi12d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ↔ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))))
4746anbi1d 630 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
48 simpl1 1191 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
49 simprll 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦𝐺))
50 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦𝐸)
512, 5, 6, 34lhpocnel2 39976 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5248, 51syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
53 simpl3l 1228 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
542, 5, 6, 35, 37ltrniotacl 40536 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5548, 52, 53, 54syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺𝑇)
566, 35, 36tendocl 40724 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸𝐺𝑇) → (𝑦𝐺) ∈ 𝑇)
5748, 50, 55, 56syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝐺) ∈ 𝑇)
5849, 57eqeltrd 2844 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥𝑇)
59 simprll 778 . . . . . . . . . . . 12 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧𝑇)
6059adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧𝑇)
61 simprrr 781 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
621, 6, 35, 36, 43tendo0cl 40747 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑍𝐸)
6348, 62syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍𝐸)
6461, 63eqeltrd 2844 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤𝐸)
65 eqid 2740 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
66 eqid 2740 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
676, 35, 36, 10, 65, 31, 66dvhopvadd 41050 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝐸) ∧ (𝑧𝑇𝑤𝐸)) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
6848, 58, 50, 60, 64, 67syl122anc 1379 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
69 dihopelvalcp.o . . . . . . . . . . . . . 14 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
706, 35, 36, 10, 65, 69, 66dvhfplusr 41041 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = 𝑂)
7148, 70syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (+g‘(Scalar‘𝑈)) = 𝑂)
7271oveqd 7465 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤))
7372opeq2d 4904 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7468, 73eqtrd 2780 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7574eqeq2d 2751 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩))
76 dihopelvalcp.f . . . . . . . . . 10 𝐹 ∈ V
77 dihopelvalcp.s . . . . . . . . . 10 𝑆 ∈ V
7876, 77opth 5496 . . . . . . . . 9 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)))
7961oveq2d 7464 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍))
801, 6, 35, 36, 43, 69tendo0plr 40749 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸) → (𝑦𝑂𝑍) = 𝑦)
8148, 50, 80syl2anc 583 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦)
8279, 81eqtrd 2780 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦)
8382eqeq2d 2751 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦))
8483anbi2d 629 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8578, 84bitrid 283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8675, 85bitrd 279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8786pm5.32da 578 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))))
88 simplll 774 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦𝐺))
8988adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
90 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦)
9190fveq1d 6922 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) = (𝑦𝐺))
9289, 91eqtr4d 2783 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆𝐺))
9390eqcomd 2746 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆)
94 coass 6296 . . . . . . . . . . 11 (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧))
95 simpl1 1191 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
96 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑦𝐸)
9796adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
9890, 97eqeltrd 2844 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆𝐸)
9955adantrr 716 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
1006, 35, 36tendocl 40724 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
10195, 98, 99, 100syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1021, 6, 35ltrn1o 40081 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺):𝐵1-1-onto𝐵)
10395, 101, 102syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺):𝐵1-1-onto𝐵)
104 f1ococnv1 6891 . . . . . . . . . . . . . 14 ((𝑆𝐺):𝐵1-1-onto𝐵 → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
105103, 104syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
106105coeq1d 5886 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧))
10759ad2antrl 727 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1081, 6, 35ltrn1o 40081 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → 𝑧:𝐵1-1-onto𝐵)
10995, 107, 108syl2anc 583 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵1-1-onto𝐵)
110 f1of 6862 . . . . . . . . . . . . 13 (𝑧:𝐵1-1-onto𝐵𝑧:𝐵𝐵)
111 fcoi2 6796 . . . . . . . . . . . . 13 (𝑧:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
112109, 110, 1113syl 18 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
113106, 112eqtr2d 2781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧))
114 simprrl 780 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
11592coeq1d 5886 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) = ((𝑆𝐺) ∘ 𝑧))
116114, 115eqtrd 2780 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆𝐺) ∘ 𝑧))
117116coeq1d 5886 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
1186, 35ltrncnv 40103 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺) ∈ 𝑇)
11995, 101, 118syl2anc 583 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1206, 35ltrnco 40676 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇𝑧𝑇) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
12195, 101, 107, 120syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
1226, 35ltrncom 40695 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
12395, 119, 121, 122syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
124117, 123eqtr4d 2783 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)))
12594, 113, 1243eqtr4a 2806 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹(𝑆𝐺)))
126 simplrr 777 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍)
127126adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍)
128125, 127jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))
12992, 93, 128jca31 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)))
130129ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))))
131130pm4.71rd 562 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
13287, 131bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
133 simprrl 780 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
134 simpll1 1212 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13588adantl 481 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
13696adantl 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
137134, 51syl 17 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
138 simpl3l 1228 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
139138adantr 480 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
140134, 137, 139, 54syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
141134, 136, 140, 56syl3anc 1371 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑦𝐺) ∈ 𝑇)
142135, 141eqeltrd 2844 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥𝑇)
14359ad2antrl 727 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1446, 35ltrnco 40676 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑧𝑇) → (𝑥𝑧) ∈ 𝑇)
145134, 142, 143, 144syl3anc 1371 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) ∈ 𝑇)
146133, 145eqeltrd 2844 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹𝑇)
147 simpl1l 1224 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL)
148147adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL)
149148hllatd 39320 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat)
1501, 6, 35, 42trlcl 40121 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) ∈ 𝐵)
151134, 143, 150syl2anc 583 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) ∈ 𝐵)
152 simpl2l 1226 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋𝐵)
153152adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑋𝐵)
154 simpl1r 1225 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊𝐻)
155154adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐻)
156155, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐵)
157149, 153, 156, 25syl3anc 1371 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) ∈ 𝐵)
158 simprlr 779 . . . . . . . . . . 11 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅𝑧) (𝑋 𝑊))
159158ad2antrl 727 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) (𝑋 𝑊))
1601, 2, 4latmle1 18534 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑋)
161149, 153, 156, 160syl3anc 1371 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) 𝑋)
1621, 2, 149, 151, 157, 153, 159, 161lattrd 18516 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) 𝑋)
163146, 136, 162jca31 514 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))
164 simprll 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆𝐺))
165164adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑆𝐺))
166 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆)
167166adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦 = 𝑆)
168167fveq1d 6922 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑦𝐺) = (𝑆𝐺))
169165, 168eqtr4d 2783 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑦𝐺))
170 simprlr 779 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦𝐸)
171169, 170jca 511 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸))
172 simprrl 780 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹(𝑆𝐺)))
173172adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧 = (𝐹(𝑆𝐺)))
174 simpll1 1212 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
175 simprll 778 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹𝑇)
176167, 170eqeltrrd 2845 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆𝐸)
177174, 51syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
178138adantr 480 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
179174, 177, 178, 54syl3anc 1371 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐺𝑇)
180174, 176, 179, 100syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
181174, 180, 118syl2anc 583 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
1826, 35ltrnco 40676 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇(𝑆𝐺) ∈ 𝑇) → (𝐹(𝑆𝐺)) ∈ 𝑇)
183174, 175, 181, 182syl3anc 1371 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹(𝑆𝐺)) ∈ 𝑇)
184173, 183eqeltrd 2844 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧𝑇)
185 simprr 772 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑋)
1862, 6, 35, 42trlle 40141 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) 𝑊)
187174, 184, 186syl2anc 583 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑊)
188147adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ HL)
189188hllatd 39320 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ Lat)
190174, 184, 150syl2anc 583 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) ∈ 𝐵)
191152adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑋𝐵)
192154adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐻)
193192, 23syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐵)
1941, 2, 4latlem12 18536 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((𝑅𝑧) ∈ 𝐵𝑋𝐵𝑊𝐵)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
195189, 190, 191, 193, 194syl13anc 1372 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
196185, 187, 195mpbi2and 711 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) (𝑋 𝑊))
197 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
198197adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑤 = 𝑍)
199184, 196, 198jca31 514 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))
200174, 180, 102syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺):𝐵1-1-onto𝐵)
201200, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
202201coeq2d 5887 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))) = (𝐹 ∘ ( I ↾ 𝐵)))
2031, 6, 35ltrn1o 40081 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
204174, 175, 203syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹:𝐵1-1-onto𝐵)
205 f1of 6862 . . . . . . . . . . . . . . 15 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
206 fcoi1 6795 . . . . . . . . . . . . . . 15 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
207204, 205, 2063syl 18 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
208202, 207eqtr2d 2781 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))))
209 coass 6296 . . . . . . . . . . . . 13 ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)) = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺)))
210208, 209eqtr4di 2798 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
2116, 35ltrncom 40695 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ (𝐹(𝑆𝐺)) ∈ 𝑇) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
212174, 180, 183, 211syl3anc 1371 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
213210, 212eqtr4d 2783 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
214165, 173coeq12d 5889 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥𝑧) = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
215213, 214eqtr4d 2783 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝑥𝑧))
216167eqcomd 2746 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆 = 𝑦)
217215, 216jca 511 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))
218171, 199, 217jca31 514 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
219163, 218impbida 800 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
220219pm5.32da 578 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
221 df-3an 1089 . . . . . 6 (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
222220, 221bitr4di 289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
22347, 132, 2223bitrd 305 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
2242234exbidv 1925 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
225 fvex 6933 . . . 4 (𝑆𝐺) ∈ V
226225cnvex 7965 . . . . 5 (𝑆𝐺) ∈ V
22776, 226coex 7970 . . . 4 (𝐹(𝑆𝐺)) ∈ V
22835fvexi 6934 . . . . . 6 𝑇 ∈ V
229228mptex 7260 . . . . 5 (𝑇 ↦ ( I ↾ 𝐵)) ∈ V
23043, 229eqeltri 2840 . . . 4 𝑍 ∈ V
231 biidd 262 . . . 4 (𝑥 = (𝑆𝐺) → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
232 eleq1 2832 . . . . . 6 (𝑦 = 𝑆 → (𝑦𝐸𝑆𝐸))
233232anbi2d 629 . . . . 5 (𝑦 = 𝑆 → ((𝐹𝑇𝑦𝐸) ↔ (𝐹𝑇𝑆𝐸)))
234233anbi1d 630 . . . 4 (𝑦 = 𝑆 → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋)))
235 fveq2 6920 . . . . . 6 (𝑧 = (𝐹(𝑆𝐺)) → (𝑅𝑧) = (𝑅‘(𝐹(𝑆𝐺))))
236235breq1d 5176 . . . . 5 (𝑧 = (𝐹(𝑆𝐺)) → ((𝑅𝑧) 𝑋 ↔ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
237236anbi2d 629 . . . 4 (𝑧 = (𝐹(𝑆𝐺)) → (((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
238 biidd 262 . . . 4 (𝑤 = 𝑍 → (((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
239225, 77, 227, 230, 231, 234, 237, 238ceqsex4v 3550 . . 3 (∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
240224, 239bitrdi 287 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
24113, 33, 2403bitrd 305 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cop 4654   class class class wbr 5166  cmpt 5249   I cid 5592  ccnv 5699  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314  lecple 17318  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  LSSumclsm 19676  LSubSpclss 20952  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  TEndoctendo 40709  DVecHcdvh 41035  DIsoBcdib 41095  DIsoCcdic 41129  DIsoHcdih 41185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712  df-edring 40714  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186
This theorem is referenced by:  dihopelvalc  41206
  Copyright terms: Public domain W3C validator