Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalcpre Structured version   Visualization version   GIF version

Theorem dihopelvalcpre 41346
Description: Member of value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.)
Hypotheses
Ref Expression
dihopelvalcp.b 𝐵 = (Base‘𝐾)
dihopelvalcp.l = (le‘𝐾)
dihopelvalcp.j = (join‘𝐾)
dihopelvalcp.m = (meet‘𝐾)
dihopelvalcp.a 𝐴 = (Atoms‘𝐾)
dihopelvalcp.h 𝐻 = (LHyp‘𝐾)
dihopelvalcp.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihopelvalcp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihopelvalcp.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihopelvalcp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihopelvalcp.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihopelvalcp.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihopelvalcp.f 𝐹 ∈ V
dihopelvalcp.s 𝑆 ∈ V
dihopelvalcp.z 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
dihopelvalcp.n 𝑁 = ((DIsoB‘𝐾)‘𝑊)
dihopelvalcp.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihopelvalcp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihopelvalcp.d + = (+g𝑈)
dihopelvalcp.v 𝑉 = (LSubSp‘𝑈)
dihopelvalcp.y = (LSSum‘𝑈)
dihopelvalcp.o 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
Assertion
Ref Expression
dihopelvalcpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑃,𝑔   𝑎,𝑏,𝐸   𝑔,,𝐻   𝑔,𝑎,,𝐾,𝑏   𝐵,   𝑇,𝑎,𝑏,𝑔,   𝑊,𝑎,𝑏,𝑔,   𝑄,𝑔
Allowed substitution hints:   𝐴(,𝑎,𝑏)   𝐵(𝑔,𝑎,𝑏)   𝐶(𝑔,,𝑎,𝑏)   𝑃(,𝑎,𝑏)   + (𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑄(,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑔,,𝑎,𝑏)   𝑈(𝑔,,𝑎,𝑏)   𝐸(𝑔,)   𝐹(𝑔,,𝑎,𝑏)   𝐺(𝑔,,𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐼(𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   (,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑁(𝑔,,𝑎,𝑏)   𝑂(𝑔,,𝑎,𝑏)   𝑉(𝑔,,𝑎,𝑏)   𝑋(𝑔,,𝑎,𝑏)   𝑍(𝑔,,𝑎,𝑏)

Proof of Theorem dihopelvalcpre
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihopelvalcp.b . . . 4 𝐵 = (Base‘𝐾)
2 dihopelvalcp.l . . . 4 = (le‘𝐾)
3 dihopelvalcp.j . . . 4 = (join‘𝐾)
4 dihopelvalcp.m . . . 4 = (meet‘𝐾)
5 dihopelvalcp.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihopelvalcp.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihopelvalcp.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihopelvalcp.n . . . 4 𝑁 = ((DIsoB‘𝐾)‘𝑊)
9 dihopelvalcp.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihopelvalcp.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihopelvalcp.y . . . 4 = (LSSum‘𝑈)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dihvalcq 41334 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐼𝑋) = ((𝐶𝑄) (𝑁‘(𝑋 𝑊))))
1312eleq2d 2817 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊)))))
14 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
16 dihopelvalcp.v . . . . 5 𝑉 = (LSubSp‘𝑈)
172, 5, 6, 10, 9, 16diclss 41291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐶𝑄) ∈ 𝑉)
1814, 15, 17syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐶𝑄) ∈ 𝑉)
19 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
2019hllatd 39462 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
21 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
22 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
231, 6lhpbase 40096 . . . . . 6 (𝑊𝐻𝑊𝐵)
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
251, 4latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2620, 21, 24, 25syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
271, 2, 4latmle2 18371 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2820, 21, 24, 27syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) 𝑊)
291, 2, 6, 10, 8, 16diblss 41268 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
3014, 26, 28, 29syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
31 dihopelvalcp.d . . . 4 + = (+g𝑈)
326, 10, 31, 16, 11dvhopellsm 41215 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 𝑊)) ∈ 𝑉) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
3314, 18, 30, 32syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
34 dihopelvalcp.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
35 dihopelvalcp.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
36 dihopelvalcp.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
37 dihopelvalcp.g . . . . . . . . 9 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
38 vex 3440 . . . . . . . . 9 𝑥 ∈ V
39 vex 3440 . . . . . . . . 9 𝑦 ∈ V
402, 5, 6, 34, 35, 36, 9, 37, 38, 39dicopelval2 41279 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
4114, 15, 40syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
42 dihopelvalcp.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
43 dihopelvalcp.z . . . . . . . . 9 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
441, 2, 6, 35, 42, 43, 8dibopelval3 41246 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4514, 26, 28, 44syl12anc 836 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4641, 45anbi12d 632 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ↔ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))))
4746anbi1d 631 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
48 simpl1 1192 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
49 simprll 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦𝐺))
50 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦𝐸)
512, 5, 6, 34lhpocnel2 40117 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5248, 51syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
53 simpl3l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
542, 5, 6, 35, 37ltrniotacl 40677 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5548, 52, 53, 54syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺𝑇)
566, 35, 36tendocl 40865 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸𝐺𝑇) → (𝑦𝐺) ∈ 𝑇)
5748, 50, 55, 56syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝐺) ∈ 𝑇)
5849, 57eqeltrd 2831 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥𝑇)
59 simprll 778 . . . . . . . . . . . 12 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧𝑇)
6059adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧𝑇)
61 simprrr 781 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
621, 6, 35, 36, 43tendo0cl 40888 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑍𝐸)
6348, 62syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍𝐸)
6461, 63eqeltrd 2831 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤𝐸)
65 eqid 2731 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
66 eqid 2731 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
676, 35, 36, 10, 65, 31, 66dvhopvadd 41191 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝐸) ∧ (𝑧𝑇𝑤𝐸)) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
6848, 58, 50, 60, 64, 67syl122anc 1381 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
69 dihopelvalcp.o . . . . . . . . . . . . . 14 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
706, 35, 36, 10, 65, 69, 66dvhfplusr 41182 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = 𝑂)
7148, 70syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (+g‘(Scalar‘𝑈)) = 𝑂)
7271oveqd 7363 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤))
7372opeq2d 4829 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7468, 73eqtrd 2766 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7574eqeq2d 2742 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩))
76 dihopelvalcp.f . . . . . . . . . 10 𝐹 ∈ V
77 dihopelvalcp.s . . . . . . . . . 10 𝑆 ∈ V
7876, 77opth 5414 . . . . . . . . 9 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)))
7961oveq2d 7362 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍))
801, 6, 35, 36, 43, 69tendo0plr 40890 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸) → (𝑦𝑂𝑍) = 𝑦)
8148, 50, 80syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦)
8279, 81eqtrd 2766 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦)
8382eqeq2d 2742 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦))
8483anbi2d 630 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8578, 84bitrid 283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8675, 85bitrd 279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8786pm5.32da 579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))))
88 simplll 774 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦𝐺))
8988adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
90 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦)
9190fveq1d 6824 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) = (𝑦𝐺))
9289, 91eqtr4d 2769 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆𝐺))
9390eqcomd 2737 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆)
94 coass 6213 . . . . . . . . . . 11 (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧))
95 simpl1 1192 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
96 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑦𝐸)
9796adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
9890, 97eqeltrd 2831 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆𝐸)
9955adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
1006, 35, 36tendocl 40865 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
10195, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1021, 6, 35ltrn1o 40222 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺):𝐵1-1-onto𝐵)
10395, 101, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺):𝐵1-1-onto𝐵)
104 f1ococnv1 6792 . . . . . . . . . . . . . 14 ((𝑆𝐺):𝐵1-1-onto𝐵 → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
105103, 104syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
106105coeq1d 5800 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧))
10759ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1081, 6, 35ltrn1o 40222 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → 𝑧:𝐵1-1-onto𝐵)
10995, 107, 108syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵1-1-onto𝐵)
110 f1of 6763 . . . . . . . . . . . . 13 (𝑧:𝐵1-1-onto𝐵𝑧:𝐵𝐵)
111 fcoi2 6698 . . . . . . . . . . . . 13 (𝑧:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
112109, 110, 1113syl 18 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
113106, 112eqtr2d 2767 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧))
114 simprrl 780 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
11592coeq1d 5800 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) = ((𝑆𝐺) ∘ 𝑧))
116114, 115eqtrd 2766 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆𝐺) ∘ 𝑧))
117116coeq1d 5800 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
1186, 35ltrncnv 40244 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺) ∈ 𝑇)
11995, 101, 118syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1206, 35ltrnco 40817 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇𝑧𝑇) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
12195, 101, 107, 120syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
1226, 35ltrncom 40836 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
12395, 119, 121, 122syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
124117, 123eqtr4d 2769 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)))
12594, 113, 1243eqtr4a 2792 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹(𝑆𝐺)))
126 simplrr 777 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍)
127126adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍)
128125, 127jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))
12992, 93, 128jca31 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)))
130129ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))))
131130pm4.71rd 562 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
13287, 131bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
133 simprrl 780 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
134 simpll1 1213 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13588adantl 481 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
13696adantl 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
137134, 51syl 17 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
138 simpl3l 1229 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
139138adantr 480 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
140134, 137, 139, 54syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
141134, 136, 140, 56syl3anc 1373 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑦𝐺) ∈ 𝑇)
142135, 141eqeltrd 2831 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥𝑇)
14359ad2antrl 728 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1446, 35ltrnco 40817 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑧𝑇) → (𝑥𝑧) ∈ 𝑇)
145134, 142, 143, 144syl3anc 1373 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) ∈ 𝑇)
146133, 145eqeltrd 2831 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹𝑇)
147 simpl1l 1225 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL)
148147adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL)
149148hllatd 39462 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat)
1501, 6, 35, 42trlcl 40262 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) ∈ 𝐵)
151134, 143, 150syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) ∈ 𝐵)
152 simpl2l 1227 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋𝐵)
153152adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑋𝐵)
154 simpl1r 1226 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊𝐻)
155154adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐻)
156155, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐵)
157149, 153, 156, 25syl3anc 1373 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) ∈ 𝐵)
158 simprlr 779 . . . . . . . . . . 11 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅𝑧) (𝑋 𝑊))
159158ad2antrl 728 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) (𝑋 𝑊))
1601, 2, 4latmle1 18370 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑋)
161149, 153, 156, 160syl3anc 1373 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) 𝑋)
1621, 2, 149, 151, 157, 153, 159, 161lattrd 18352 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) 𝑋)
163146, 136, 162jca31 514 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))
164 simprll 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆𝐺))
165164adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑆𝐺))
166 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆)
167166adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦 = 𝑆)
168167fveq1d 6824 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑦𝐺) = (𝑆𝐺))
169165, 168eqtr4d 2769 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑦𝐺))
170 simprlr 779 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦𝐸)
171169, 170jca 511 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸))
172 simprrl 780 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹(𝑆𝐺)))
173172adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧 = (𝐹(𝑆𝐺)))
174 simpll1 1213 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
175 simprll 778 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹𝑇)
176167, 170eqeltrrd 2832 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆𝐸)
177174, 51syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
178138adantr 480 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
179174, 177, 178, 54syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐺𝑇)
180174, 176, 179, 100syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
181174, 180, 118syl2anc 584 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
1826, 35ltrnco 40817 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇(𝑆𝐺) ∈ 𝑇) → (𝐹(𝑆𝐺)) ∈ 𝑇)
183174, 175, 181, 182syl3anc 1373 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹(𝑆𝐺)) ∈ 𝑇)
184173, 183eqeltrd 2831 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧𝑇)
185 simprr 772 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑋)
1862, 6, 35, 42trlle 40282 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) 𝑊)
187174, 184, 186syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑊)
188147adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ HL)
189188hllatd 39462 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ Lat)
190174, 184, 150syl2anc 584 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) ∈ 𝐵)
191152adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑋𝐵)
192154adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐻)
193192, 23syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐵)
1941, 2, 4latlem12 18372 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((𝑅𝑧) ∈ 𝐵𝑋𝐵𝑊𝐵)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
195189, 190, 191, 193, 194syl13anc 1374 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
196185, 187, 195mpbi2and 712 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) (𝑋 𝑊))
197 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
198197adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑤 = 𝑍)
199184, 196, 198jca31 514 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))
200174, 180, 102syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺):𝐵1-1-onto𝐵)
201200, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
202201coeq2d 5801 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))) = (𝐹 ∘ ( I ↾ 𝐵)))
2031, 6, 35ltrn1o 40222 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
204174, 175, 203syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹:𝐵1-1-onto𝐵)
205 f1of 6763 . . . . . . . . . . . . . . 15 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
206 fcoi1 6697 . . . . . . . . . . . . . . 15 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
207204, 205, 2063syl 18 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
208202, 207eqtr2d 2767 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))))
209 coass 6213 . . . . . . . . . . . . 13 ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)) = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺)))
210208, 209eqtr4di 2784 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
2116, 35ltrncom 40836 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ (𝐹(𝑆𝐺)) ∈ 𝑇) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
212174, 180, 183, 211syl3anc 1373 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
213210, 212eqtr4d 2769 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
214165, 173coeq12d 5803 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥𝑧) = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
215213, 214eqtr4d 2769 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝑥𝑧))
216167eqcomd 2737 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆 = 𝑦)
217215, 216jca 511 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))
218171, 199, 217jca31 514 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
219163, 218impbida 800 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
220219pm5.32da 579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
221 df-3an 1088 . . . . . 6 (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
222220, 221bitr4di 289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
22347, 132, 2223bitrd 305 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
2242234exbidv 1927 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
225 fvex 6835 . . . 4 (𝑆𝐺) ∈ V
226225cnvex 7855 . . . . 5 (𝑆𝐺) ∈ V
22776, 226coex 7860 . . . 4 (𝐹(𝑆𝐺)) ∈ V
22835fvexi 6836 . . . . . 6 𝑇 ∈ V
229228mptex 7157 . . . . 5 (𝑇 ↦ ( I ↾ 𝐵)) ∈ V
23043, 229eqeltri 2827 . . . 4 𝑍 ∈ V
231 biidd 262 . . . 4 (𝑥 = (𝑆𝐺) → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
232 eleq1 2819 . . . . . 6 (𝑦 = 𝑆 → (𝑦𝐸𝑆𝐸))
233232anbi2d 630 . . . . 5 (𝑦 = 𝑆 → ((𝐹𝑇𝑦𝐸) ↔ (𝐹𝑇𝑆𝐸)))
234233anbi1d 631 . . . 4 (𝑦 = 𝑆 → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋)))
235 fveq2 6822 . . . . . 6 (𝑧 = (𝐹(𝑆𝐺)) → (𝑅𝑧) = (𝑅‘(𝐹(𝑆𝐺))))
236235breq1d 5099 . . . . 5 (𝑧 = (𝐹(𝑆𝐺)) → ((𝑅𝑧) 𝑋 ↔ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
237236anbi2d 630 . . . 4 (𝑧 = (𝐹(𝑆𝐺)) → (((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
238 biidd 262 . . . 4 (𝑤 = 𝑍 → (((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
239225, 77, 227, 230, 231, 234, 237, 238ceqsex4v 3492 . . 3 (∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
240224, 239bitrdi 287 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
24113, 33, 2403bitrd 305 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cop 4579   class class class wbr 5089  cmpt 5170   I cid 5508  ccnv 5613  cres 5616  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  crio 7302  (class class class)co 7346  cmpo 7348  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  lecple 17168  occoc 17169  joincjn 18217  meetcmee 18218  Latclat 18337  LSSumclsm 19546  LSubSpclss 20864  Atomscatm 39361  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  trLctrl 40256  TEndoctendo 40850  DVecHcdvh 41176  DIsoBcdib 41236  DIsoCcdic 41270  DIsoHcdih 41326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lvols 39598  df-lines 39599  df-psubsp 39601  df-pmap 39602  df-padd 39894  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257  df-tendo 40853  df-edring 40855  df-disoa 41127  df-dvech 41177  df-dib 41237  df-dic 41271  df-dih 41327
This theorem is referenced by:  dihopelvalc  41347
  Copyright terms: Public domain W3C validator