| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dihopelvalcp.b | . . . 4
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | dihopelvalcp.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | dihopelvalcp.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 4 |  | dihopelvalcp.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 5 |  | dihopelvalcp.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 |  | dihopelvalcp.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | dihopelvalcp.i | . . . 4
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| 8 |  | dihopelvalcp.n | . . . 4
⊢ 𝑁 = ((DIsoB‘𝐾)‘𝑊) | 
| 9 |  | dihopelvalcp.c | . . . 4
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | 
| 10 |  | dihopelvalcp.u | . . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 11 |  | dihopelvalcp.y | . . . 4
⊢  ⊕ =
(LSSum‘𝑈) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | dihvalcq 41238 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊)))) | 
| 13 | 12 | eleq2d 2827 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))))) | 
| 14 |  | simp1 1137 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 15 |  | simp3l 1202 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 16 |  | dihopelvalcp.v | . . . . 5
⊢ 𝑉 = (LSubSp‘𝑈) | 
| 17 | 2, 5, 6, 10, 9, 16 | diclss 41195 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐶‘𝑄) ∈ 𝑉) | 
| 18 | 14, 15, 17 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶‘𝑄) ∈ 𝑉) | 
| 19 |  | simp1l 1198 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ HL) | 
| 20 | 19 | hllatd 39365 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ Lat) | 
| 21 |  | simp2l 1200 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) | 
| 22 |  | simp1r 1199 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐻) | 
| 23 | 1, 6 | lhpbase 40000 | . . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | 
| 24 | 22, 23 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐵) | 
| 25 | 1, 4 | latmcl 18485 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 26 | 20, 21, 24, 25 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 27 | 1, 2, 4 | latmle2 18510 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) | 
| 28 | 20, 21, 24, 27 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ≤ 𝑊) | 
| 29 | 1, 2, 6, 10, 8, 16 | diblss 41172 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) | 
| 30 | 14, 26, 28, 29 | syl12anc 837 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) | 
| 31 |  | dihopelvalcp.d | . . . 4
⊢  + =
(+g‘𝑈) | 
| 32 | 6, 10, 31, 16, 11 | dvhopellsm 41119 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶‘𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 ∧ 𝑊)) ∈ 𝑉) → (〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) | 
| 33 | 14, 18, 30, 32 | syl3anc 1373 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ ((𝐶‘𝑄) ⊕ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) | 
| 34 |  | dihopelvalcp.p | . . . . . . . . 9
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | 
| 35 |  | dihopelvalcp.t | . . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 36 |  | dihopelvalcp.e | . . . . . . . . 9
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| 37 |  | dihopelvalcp.g | . . . . . . . . 9
⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | 
| 38 |  | vex 3484 | . . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 39 |  | vex 3484 | . . . . . . . . 9
⊢ 𝑦 ∈ V | 
| 40 | 2, 5, 6, 34, 35, 36, 9, 37, 38, 39 | dicopelval2 41183 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ↔ (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸))) | 
| 41 | 14, 15, 40 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ↔ (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸))) | 
| 42 |  | dihopelvalcp.r | . . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 43 |  | dihopelvalcp.z | . . . . . . . . 9
⊢ 𝑍 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | 
| 44 | 1, 2, 6, 35, 42, 43, 8 | dibopelval3 41150 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊)) ↔ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) | 
| 45 | 14, 26, 28, 44 | syl12anc 837 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊)) ↔ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) | 
| 46 | 41, 45 | anbi12d 632 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ↔ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)))) | 
| 47 | 46 | anbi1d 631 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) | 
| 48 |  | simpl1 1192 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 49 |  | simprll 779 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦‘𝐺)) | 
| 50 |  | simprlr 780 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦 ∈ 𝐸) | 
| 51 | 2, 5, 6, 34 | lhpocnel2 40021 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 52 | 48, 51 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 53 |  | simpl3l 1229 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 54 | 2, 5, 6, 35, 37 | ltrniotacl 40581 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | 
| 55 | 48, 52, 53, 54 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺 ∈ 𝑇) | 
| 56 | 6, 35, 36 | tendocl 40769 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑦‘𝐺) ∈ 𝑇) | 
| 57 | 48, 50, 55, 56 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦‘𝐺) ∈ 𝑇) | 
| 58 | 49, 57 | eqeltrd 2841 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 ∈ 𝑇) | 
| 59 |  | simprll 779 | . . . . . . . . . . . 12
⊢ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧 ∈ 𝑇) | 
| 60 | 59 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧 ∈ 𝑇) | 
| 61 |  | simprrr 782 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍) | 
| 62 | 1, 6, 35, 36, 43 | tendo0cl 40792 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑍 ∈ 𝐸) | 
| 63 | 48, 62 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍 ∈ 𝐸) | 
| 64 | 61, 63 | eqeltrd 2841 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 ∈ 𝐸) | 
| 65 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) | 
| 66 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) | 
| 67 | 6, 35, 36, 10, 65, 31, 66 | dvhopvadd 41095 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑧 ∈ 𝑇 ∧ 𝑤 ∈ 𝐸)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉) | 
| 68 | 48, 58, 50, 60, 64, 67 | syl122anc 1381 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉) | 
| 69 |  | dihopelvalcp.o | . . . . . . . . . . . . . 14
⊢ 𝑂 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑎‘ℎ) ∘ (𝑏‘ℎ)))) | 
| 70 | 6, 35, 36, 10, 65, 69, 66 | dvhfplusr 41086 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = 𝑂) | 
| 71 | 48, 70 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) →
(+g‘(Scalar‘𝑈)) = 𝑂) | 
| 72 | 71 | oveqd 7448 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤)) | 
| 73 | 72 | opeq2d 4880 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → 〈(𝑥 ∘ 𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉) | 
| 74 | 68, 73 | eqtrd 2777 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉) | 
| 75 | 74 | eqeq2d 2748 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉)) | 
| 76 |  | dihopelvalcp.f | . . . . . . . . . 10
⊢ 𝐹 ∈ V | 
| 77 |  | dihopelvalcp.s | . . . . . . . . . 10
⊢ 𝑆 ∈ V | 
| 78 | 76, 77 | opth 5481 | . . . . . . . . 9
⊢
(〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑦𝑂𝑤))) | 
| 79 | 61 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍)) | 
| 80 | 1, 6, 35, 36, 43, 69 | tendo0plr 40794 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐸) → (𝑦𝑂𝑍) = 𝑦) | 
| 81 | 48, 50, 80 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦) | 
| 82 | 79, 81 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦) | 
| 83 | 82 | eqeq2d 2748 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦)) | 
| 84 | 83 | anbi2d 630 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) | 
| 85 | 78, 84 | bitrid 283 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑦𝑂𝑤)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) | 
| 86 | 75, 85 | bitrd 279 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) | 
| 87 | 86 | pm5.32da 579 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)))) | 
| 88 |  | simplll 775 | . . . . . . . . . . 11
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦‘𝐺)) | 
| 89 | 88 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦‘𝐺)) | 
| 90 |  | simprrr 782 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦) | 
| 91 | 90 | fveq1d 6908 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺) = (𝑦‘𝐺)) | 
| 92 | 89, 91 | eqtr4d 2780 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆‘𝐺)) | 
| 93 | 90 | eqcomd 2743 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆) | 
| 94 |  | coass 6285 | . . . . . . . . . . 11
⊢ ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧) = (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) | 
| 95 |  | simpl1 1192 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 96 |  | simpllr 776 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑦 ∈ 𝐸) | 
| 97 | 96 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 ∈ 𝐸) | 
| 98 | 90, 97 | eqeltrd 2841 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 ∈ 𝐸) | 
| 99 | 55 | adantrr 717 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐺 ∈ 𝑇) | 
| 100 | 6, 35, 36 | tendocl 40769 | . . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑆‘𝐺) ∈ 𝑇) | 
| 101 | 95, 98, 99, 100 | syl3anc 1373 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺) ∈ 𝑇) | 
| 102 | 1, 6, 35 | ltrn1o 40126 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) | 
| 103 | 95, 101, 102 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) | 
| 104 |  | f1ococnv1 6877 | . . . . . . . . . . . . . 14
⊢ ((𝑆‘𝐺):𝐵–1-1-onto→𝐵 → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) | 
| 105 | 103, 104 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) | 
| 106 | 105 | coeq1d 5872 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧)) | 
| 107 | 59 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 ∈ 𝑇) | 
| 108 | 1, 6, 35 | ltrn1o 40126 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → 𝑧:𝐵–1-1-onto→𝐵) | 
| 109 | 95, 107, 108 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵–1-1-onto→𝐵) | 
| 110 |  | f1of 6848 | . . . . . . . . . . . . 13
⊢ (𝑧:𝐵–1-1-onto→𝐵 → 𝑧:𝐵⟶𝐵) | 
| 111 |  | fcoi2 6783 | . . . . . . . . . . . . 13
⊢ (𝑧:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧) | 
| 112 | 109, 110,
111 | 3syl 18 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧) | 
| 113 | 106, 112 | eqtr2d 2778 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = ((◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) ∘ 𝑧)) | 
| 114 |  | simprrl 781 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥 ∘ 𝑧)) | 
| 115 | 92 | coeq1d 5872 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑥 ∘ 𝑧) = ((𝑆‘𝐺) ∘ 𝑧)) | 
| 116 | 114, 115 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆‘𝐺) ∘ 𝑧)) | 
| 117 | 116 | coeq1d 5872 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐹 ∘ ◡(𝑆‘𝐺)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) | 
| 118 | 6, 35 | ltrncnv 40148 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇) → ◡(𝑆‘𝐺) ∈ 𝑇) | 
| 119 | 95, 101, 118 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ◡(𝑆‘𝐺) ∈ 𝑇) | 
| 120 | 6, 35 | ltrnco 40721 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) | 
| 121 | 95, 101, 107, 120 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) | 
| 122 | 6, 35 | ltrncom 40740 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡(𝑆‘𝐺) ∈ 𝑇 ∧ ((𝑆‘𝐺) ∘ 𝑧) ∈ 𝑇) → (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) | 
| 123 | 95, 119, 121, 122 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧)) = (((𝑆‘𝐺) ∘ 𝑧) ∘ ◡(𝑆‘𝐺))) | 
| 124 | 117, 123 | eqtr4d 2780 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐹 ∘ ◡(𝑆‘𝐺)) = (◡(𝑆‘𝐺) ∘ ((𝑆‘𝐺) ∘ 𝑧))) | 
| 125 | 94, 113, 124 | 3eqtr4a 2803 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) | 
| 126 |  | simplrr 778 | . . . . . . . . . . 11
⊢ ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍) | 
| 127 | 126 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍) | 
| 128 | 125, 127 | jca 511 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) | 
| 129 | 92, 93, 128 | jca31 514 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) | 
| 130 | 129 | ex 412 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)))) | 
| 131 | 130 | pm4.71rd 562 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))))) | 
| 132 | 87, 131 | bitrd 279 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))))) | 
| 133 |  | simprrl 781 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥 ∘ 𝑧)) | 
| 134 |  | simpll1 1213 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 135 | 88 | adantl 481 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦‘𝐺)) | 
| 136 | 96 | adantl 481 | . . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 ∈ 𝐸) | 
| 137 | 134, 51 | syl 17 | . . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 138 |  | simpl3l 1229 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 139 | 138 | adantr 480 | . . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 140 | 134, 137,
139, 54 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐺 ∈ 𝑇) | 
| 141 | 134, 136,
140, 56 | syl3anc 1373 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑦‘𝐺) ∈ 𝑇) | 
| 142 | 135, 141 | eqeltrd 2841 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 ∈ 𝑇) | 
| 143 | 59 | ad2antrl 728 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 ∈ 𝑇) | 
| 144 | 6, 35 | ltrnco 40721 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (𝑥 ∘ 𝑧) ∈ 𝑇) | 
| 145 | 134, 142,
143, 144 | syl3anc 1373 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑥 ∘ 𝑧) ∈ 𝑇) | 
| 146 | 133, 145 | eqeltrd 2841 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 ∈ 𝑇) | 
| 147 |  | simpl1l 1225 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL) | 
| 148 | 147 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL) | 
| 149 | 148 | hllatd 39365 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat) | 
| 150 | 1, 6, 35, 42 | trlcl 40166 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → (𝑅‘𝑧) ∈ 𝐵) | 
| 151 | 134, 143,
150 | syl2anc 584 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ∈ 𝐵) | 
| 152 |  | simpl2l 1227 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋 ∈ 𝐵) | 
| 153 | 152 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑋 ∈ 𝐵) | 
| 154 |  | simpl1r 1226 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊 ∈ 𝐻) | 
| 155 | 154 | adantr 480 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑊 ∈ 𝐻) | 
| 156 | 155, 23 | syl 17 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → 𝑊 ∈ 𝐵) | 
| 157 | 149, 153,
156, 25 | syl3anc 1373 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 ∧ 𝑊) ∈ 𝐵) | 
| 158 |  | simprlr 780 | . . . . . . . . . . 11
⊢ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) | 
| 159 | 158 | ad2antrl 728 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) | 
| 160 | 1, 2, 4 | latmle1 18509 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑋) | 
| 161 | 149, 153,
156, 160 | syl3anc 1373 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 ∧ 𝑊) ≤ 𝑋) | 
| 162 | 1, 2, 149, 151, 157, 153, 159, 161 | lattrd 18491 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → (𝑅‘𝑧) ≤ 𝑋) | 
| 163 | 146, 136,
162 | jca31 514 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) | 
| 164 |  | simprll 779 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆‘𝐺)) | 
| 165 | 164 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑥 = (𝑆‘𝐺)) | 
| 166 |  | simprlr 780 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆) | 
| 167 | 166 | adantr 480 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑦 = 𝑆) | 
| 168 | 167 | fveq1d 6908 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑦‘𝐺) = (𝑆‘𝐺)) | 
| 169 | 165, 168 | eqtr4d 2780 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑥 = (𝑦‘𝐺)) | 
| 170 |  | simprlr 780 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑦 ∈ 𝐸) | 
| 171 | 169, 170 | jca 511 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸)) | 
| 172 |  | simprrl 781 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) | 
| 173 | 172 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺))) | 
| 174 |  | simpll1 1213 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 175 |  | simprll 779 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 ∈ 𝑇) | 
| 176 | 167, 170 | eqeltrrd 2842 | . . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑆 ∈ 𝐸) | 
| 177 | 174, 51 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 178 | 138 | adantr 480 | . . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 179 | 174, 177,
178, 54 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐺 ∈ 𝑇) | 
| 180 | 174, 176,
179, 100 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑆‘𝐺) ∈ 𝑇) | 
| 181 | 174, 180,
118 | syl2anc 584 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ◡(𝑆‘𝐺) ∈ 𝑇) | 
| 182 | 6, 35 | ltrnco 40721 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ◡(𝑆‘𝐺) ∈ 𝑇) → (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) | 
| 183 | 174, 175,
181, 182 | syl3anc 1373 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) | 
| 184 | 173, 183 | eqeltrd 2841 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑧 ∈ 𝑇) | 
| 185 |  | simprr 773 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ 𝑋) | 
| 186 | 2, 6, 35, 42 | trlle 40186 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑧 ∈ 𝑇) → (𝑅‘𝑧) ≤ 𝑊) | 
| 187 | 174, 184,
186 | syl2anc 584 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ 𝑊) | 
| 188 | 147 | adantr 480 | . . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐾 ∈ HL) | 
| 189 | 188 | hllatd 39365 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐾 ∈ Lat) | 
| 190 | 174, 184,
150 | syl2anc 584 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ∈ 𝐵) | 
| 191 | 152 | adantr 480 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑋 ∈ 𝐵) | 
| 192 | 154 | adantr 480 | . . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑊 ∈ 𝐻) | 
| 193 | 192, 23 | syl 17 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑊 ∈ 𝐵) | 
| 194 | 1, 2, 4 | latlem12 18511 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝑧) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑅‘𝑧) ≤ 𝑋 ∧ (𝑅‘𝑧) ≤ 𝑊) ↔ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊))) | 
| 195 | 189, 190,
191, 193, 194 | syl13anc 1374 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (((𝑅‘𝑧) ≤ 𝑋 ∧ (𝑅‘𝑧) ≤ 𝑊) ↔ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊))) | 
| 196 | 185, 187,
195 | mpbi2and 712 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) | 
| 197 |  | simprrr 782 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍) | 
| 198 | 197 | adantr 480 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑤 = 𝑍) | 
| 199 | 184, 196,
198 | jca31 514 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) | 
| 200 | 174, 180,
102 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑆‘𝐺):𝐵–1-1-onto→𝐵) | 
| 201 | 200, 104 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)) = ( I ↾ 𝐵)) | 
| 202 | 201 | coeq2d 5873 | . . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺))) = (𝐹 ∘ ( I ↾ 𝐵))) | 
| 203 | 1, 6, 35 | ltrn1o 40126 | . . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) | 
| 204 | 174, 175,
203 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹:𝐵–1-1-onto→𝐵) | 
| 205 |  | f1of 6848 | . . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | 
| 206 |  | fcoi1 6782 | . . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | 
| 207 | 204, 205,
206 | 3syl 18 | . . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | 
| 208 | 202, 207 | eqtr2d 2778 | . . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺)))) | 
| 209 |  | coass 6285 | . . . . . . . . . . . . 13
⊢ ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺)) = (𝐹 ∘ (◡(𝑆‘𝐺) ∘ (𝑆‘𝐺))) | 
| 210 | 208, 209 | eqtr4di 2795 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) | 
| 211 | 6, 35 | ltrncom 40740 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐺) ∈ 𝑇 ∧ (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ 𝑇) → ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺))) = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) | 
| 212 | 174, 180,
183, 211 | syl3anc 1373 | . . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺))) = ((𝐹 ∘ ◡(𝑆‘𝐺)) ∘ (𝑆‘𝐺))) | 
| 213 | 210, 212 | eqtr4d 2780 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺)))) | 
| 214 | 165, 173 | coeq12d 5875 | . . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝑥 ∘ 𝑧) = ((𝑆‘𝐺) ∘ (𝐹 ∘ ◡(𝑆‘𝐺)))) | 
| 215 | 213, 214 | eqtr4d 2780 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝐹 = (𝑥 ∘ 𝑧)) | 
| 216 | 167 | eqcomd 2743 | . . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → 𝑆 = 𝑦) | 
| 217 | 215, 216 | jca 511 | . . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) | 
| 218 | 171, 199,
217 | jca31 514 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) → (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) | 
| 219 | 163, 218 | impbida 801 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) | 
| 220 | 219 | pm5.32da 579 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) | 
| 221 |  | df-3an 1089 | . . . . . 6
⊢ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) ↔ (((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) | 
| 222 | 220, 221 | bitr4di 289 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦‘𝐺) ∧ 𝑦 ∈ 𝐸) ∧ ((𝑧 ∈ 𝑇 ∧ (𝑅‘𝑧) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) | 
| 223 | 47, 132, 222 | 3bitrd 305 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) | 
| 224 | 223 | 4exbidv 1926 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)))) | 
| 225 |  | fvex 6919 | . . . 4
⊢ (𝑆‘𝐺) ∈ V | 
| 226 | 225 | cnvex 7947 | . . . . 5
⊢ ◡(𝑆‘𝐺) ∈ V | 
| 227 | 76, 226 | coex 7952 | . . . 4
⊢ (𝐹 ∘ ◡(𝑆‘𝐺)) ∈ V | 
| 228 | 35 | fvexi 6920 | . . . . . 6
⊢ 𝑇 ∈ V | 
| 229 | 228 | mptex 7243 | . . . . 5
⊢ (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V | 
| 230 | 43, 229 | eqeltri 2837 | . . . 4
⊢ 𝑍 ∈ V | 
| 231 |  | biidd 262 | . . . 4
⊢ (𝑥 = (𝑆‘𝐺) → (((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) | 
| 232 |  | eleq1 2829 | . . . . . 6
⊢ (𝑦 = 𝑆 → (𝑦 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) | 
| 233 | 232 | anbi2d 630 | . . . . 5
⊢ (𝑦 = 𝑆 → ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ↔ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸))) | 
| 234 | 233 | anbi1d 631 | . . . 4
⊢ (𝑦 = 𝑆 → (((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋))) | 
| 235 |  | fveq2 6906 | . . . . . 6
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → (𝑅‘𝑧) = (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺)))) | 
| 236 | 235 | breq1d 5153 | . . . . 5
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → ((𝑅‘𝑧) ≤ 𝑋 ↔ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋)) | 
| 237 | 236 | anbi2d 630 | . . . 4
⊢ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) → (((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) | 
| 238 |  | biidd 262 | . . . 4
⊢ (𝑤 = 𝑍 → (((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) | 
| 239 | 225, 77, 227, 230, 231, 234, 237, 238 | ceqsex4v 3538 | . . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = (𝑆‘𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹 ∘ ◡(𝑆‘𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑦 ∈ 𝐸) ∧ (𝑅‘𝑧) ≤ 𝑋)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋)) | 
| 240 | 224, 239 | bitrdi 287 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐶‘𝑄) ∧ 〈𝑧, 𝑤〉 ∈ (𝑁‘(𝑋 ∧ 𝑊))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) | 
| 241 | 13, 33, 240 | 3bitrd 305 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (𝑅‘(𝐹 ∘ ◡(𝑆‘𝐺))) ≤ 𝑋))) |