Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalcpre Structured version   Visualization version   GIF version

Theorem dihopelvalcpre 41249
Description: Member of value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.)
Hypotheses
Ref Expression
dihopelvalcp.b 𝐵 = (Base‘𝐾)
dihopelvalcp.l = (le‘𝐾)
dihopelvalcp.j = (join‘𝐾)
dihopelvalcp.m = (meet‘𝐾)
dihopelvalcp.a 𝐴 = (Atoms‘𝐾)
dihopelvalcp.h 𝐻 = (LHyp‘𝐾)
dihopelvalcp.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihopelvalcp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihopelvalcp.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihopelvalcp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihopelvalcp.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihopelvalcp.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihopelvalcp.f 𝐹 ∈ V
dihopelvalcp.s 𝑆 ∈ V
dihopelvalcp.z 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
dihopelvalcp.n 𝑁 = ((DIsoB‘𝐾)‘𝑊)
dihopelvalcp.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihopelvalcp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihopelvalcp.d + = (+g𝑈)
dihopelvalcp.v 𝑉 = (LSubSp‘𝑈)
dihopelvalcp.y = (LSSum‘𝑈)
dihopelvalcp.o 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
Assertion
Ref Expression
dihopelvalcpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑃,𝑔   𝑎,𝑏,𝐸   𝑔,,𝐻   𝑔,𝑎,,𝐾,𝑏   𝐵,   𝑇,𝑎,𝑏,𝑔,   𝑊,𝑎,𝑏,𝑔,   𝑄,𝑔
Allowed substitution hints:   𝐴(,𝑎,𝑏)   𝐵(𝑔,𝑎,𝑏)   𝐶(𝑔,,𝑎,𝑏)   𝑃(,𝑎,𝑏)   + (𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑄(,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑔,,𝑎,𝑏)   𝑈(𝑔,,𝑎,𝑏)   𝐸(𝑔,)   𝐹(𝑔,,𝑎,𝑏)   𝐺(𝑔,,𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐼(𝑔,,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   (,𝑎,𝑏)   (𝑔,,𝑎,𝑏)   𝑁(𝑔,,𝑎,𝑏)   𝑂(𝑔,,𝑎,𝑏)   𝑉(𝑔,,𝑎,𝑏)   𝑋(𝑔,,𝑎,𝑏)   𝑍(𝑔,,𝑎,𝑏)

Proof of Theorem dihopelvalcpre
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihopelvalcp.b . . . 4 𝐵 = (Base‘𝐾)
2 dihopelvalcp.l . . . 4 = (le‘𝐾)
3 dihopelvalcp.j . . . 4 = (join‘𝐾)
4 dihopelvalcp.m . . . 4 = (meet‘𝐾)
5 dihopelvalcp.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dihopelvalcp.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihopelvalcp.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihopelvalcp.n . . . 4 𝑁 = ((DIsoB‘𝐾)‘𝑊)
9 dihopelvalcp.c . . . 4 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihopelvalcp.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihopelvalcp.y . . . 4 = (LSSum‘𝑈)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dihvalcq 41237 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐼𝑋) = ((𝐶𝑄) (𝑁‘(𝑋 𝑊))))
1312eleq2d 2815 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊)))))
14 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
16 dihopelvalcp.v . . . . 5 𝑉 = (LSubSp‘𝑈)
172, 5, 6, 10, 9, 16diclss 41194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐶𝑄) ∈ 𝑉)
1814, 15, 17syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝐶𝑄) ∈ 𝑉)
19 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
2019hllatd 39364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
21 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
22 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
231, 6lhpbase 39999 . . . . . 6 (𝑊𝐻𝑊𝐵)
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
251, 4latmcl 18406 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2620, 21, 24, 25syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
271, 2, 4latmle2 18431 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2820, 21, 24, 27syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) 𝑊)
291, 2, 6, 10, 8, 16diblss 41171 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
3014, 26, 28, 29syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (𝑁‘(𝑋 𝑊)) ∈ 𝑉)
31 dihopelvalcp.d . . . 4 + = (+g𝑈)
326, 10, 31, 16, 11dvhopellsm 41118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝑄) ∈ 𝑉 ∧ (𝑁‘(𝑋 𝑊)) ∈ 𝑉) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
3314, 18, 30, 32syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐶𝑄) (𝑁‘(𝑋 𝑊))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
34 dihopelvalcp.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
35 dihopelvalcp.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
36 dihopelvalcp.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
37 dihopelvalcp.g . . . . . . . . 9 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
38 vex 3454 . . . . . . . . 9 𝑥 ∈ V
39 vex 3454 . . . . . . . . 9 𝑦 ∈ V
402, 5, 6, 34, 35, 36, 9, 37, 38, 39dicopelval2 41182 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
4114, 15, 40syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ↔ (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸)))
42 dihopelvalcp.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
43 dihopelvalcp.z . . . . . . . . 9 𝑍 = (𝑇 ↦ ( I ↾ 𝐵))
441, 2, 6, 35, 42, 43, 8dibopelval3 41149 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4514, 26, 28, 44syl12anc 836 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊)) ↔ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)))
4641, 45anbi12d 632 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ↔ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))))
4746anbi1d 631 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
48 simpl1 1192 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
49 simprll 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑦𝐺))
50 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑦𝐸)
512, 5, 6, 34lhpocnel2 40020 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5248, 51syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
53 simpl3l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
542, 5, 6, 35, 37ltrniotacl 40580 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5548, 52, 53, 54syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝐺𝑇)
566, 35, 36tendocl 40768 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸𝐺𝑇) → (𝑦𝐺) ∈ 𝑇)
5748, 50, 55, 56syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝐺) ∈ 𝑇)
5849, 57eqeltrd 2829 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑥𝑇)
59 simprll 778 . . . . . . . . . . . 12 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → 𝑧𝑇)
6059adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑧𝑇)
61 simprrr 781 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
621, 6, 35, 36, 43tendo0cl 40791 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑍𝐸)
6348, 62syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑍𝐸)
6461, 63eqeltrd 2829 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → 𝑤𝐸)
65 eqid 2730 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
66 eqid 2730 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
676, 35, 36, 10, 65, 31, 66dvhopvadd 41094 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝐸) ∧ (𝑧𝑇𝑤𝐸)) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
6848, 58, 50, 60, 64, 67syl122anc 1381 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩)
69 dihopelvalcp.o . . . . . . . . . . . . . 14 𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))
706, 35, 36, 10, 65, 69, 66dvhfplusr 41085 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = 𝑂)
7148, 70syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (+g‘(Scalar‘𝑈)) = 𝑂)
7271oveqd 7407 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦(+g‘(Scalar‘𝑈))𝑤) = (𝑦𝑂𝑤))
7372opeq2d 4847 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ⟨(𝑥𝑧), (𝑦(+g‘(Scalar‘𝑈))𝑤)⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7468, 73eqtrd 2765 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝑥, 𝑦+𝑧, 𝑤⟩) = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩)
7574eqeq2d 2741 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩))
76 dihopelvalcp.f . . . . . . . . . 10 𝐹 ∈ V
77 dihopelvalcp.s . . . . . . . . . 10 𝑆 ∈ V
7876, 77opth 5439 . . . . . . . . 9 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)))
7961oveq2d 7406 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = (𝑦𝑂𝑍))
801, 6, 35, 36, 43, 69tendo0plr 40793 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝐸) → (𝑦𝑂𝑍) = 𝑦)
8148, 50, 80syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑍) = 𝑦)
8279, 81eqtrd 2765 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑦𝑂𝑤) = 𝑦)
8382eqeq2d 2741 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (𝑆 = (𝑦𝑂𝑤) ↔ 𝑆 = 𝑦))
8483anbi2d 630 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑦𝑂𝑤)) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8578, 84bitrid 283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑦𝑂𝑤)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8675, 85bitrd 279 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩) ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
8786pm5.32da 579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))))
88 simplll 774 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑥 = (𝑦𝐺))
8988adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
90 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆 = 𝑦)
9190fveq1d 6863 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) = (𝑦𝐺))
9289, 91eqtr4d 2768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑆𝐺))
9390eqcomd 2736 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦 = 𝑆)
94 coass 6241 . . . . . . . . . . 11 (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧))
95 simpl1 1192 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
96 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑦𝐸)
9796adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
9890, 97eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑆𝐸)
9955adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
1006, 35, 36tendocl 40768 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
10195, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1021, 6, 35ltrn1o 40125 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺):𝐵1-1-onto𝐵)
10395, 101, 102syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺):𝐵1-1-onto𝐵)
104 f1ococnv1 6832 . . . . . . . . . . . . . 14 ((𝑆𝐺):𝐵1-1-onto𝐵 → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
105103, 104syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
106105coeq1d 5828 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧) = (( I ↾ 𝐵) ∘ 𝑧))
10759ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1081, 6, 35ltrn1o 40125 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → 𝑧:𝐵1-1-onto𝐵)
10995, 107, 108syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧:𝐵1-1-onto𝐵)
110 f1of 6803 . . . . . . . . . . . . 13 (𝑧:𝐵1-1-onto𝐵𝑧:𝐵𝐵)
111 fcoi2 6738 . . . . . . . . . . . . 13 (𝑧:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
112109, 110, 1113syl 18 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (( I ↾ 𝐵) ∘ 𝑧) = 𝑧)
113106, 112eqtr2d 2766 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (((𝑆𝐺) ∘ (𝑆𝐺)) ∘ 𝑧))
114 simprrl 780 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
11592coeq1d 5828 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) = ((𝑆𝐺) ∘ 𝑧))
116114, 115eqtrd 2765 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = ((𝑆𝐺) ∘ 𝑧))
117116coeq1d 5828 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
1186, 35ltrncnv 40147 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇) → (𝑆𝐺) ∈ 𝑇)
11995, 101, 118syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑆𝐺) ∈ 𝑇)
1206, 35ltrnco 40720 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇𝑧𝑇) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
12195, 101, 107, 120syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇)
1226, 35ltrncom 40739 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ ((𝑆𝐺) ∘ 𝑧) ∈ 𝑇) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
12395, 119, 121, 122syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)) = (((𝑆𝐺) ∘ 𝑧) ∘ (𝑆𝐺)))
124117, 123eqtr4d 2768 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐹(𝑆𝐺)) = ((𝑆𝐺) ∘ ((𝑆𝐺) ∘ 𝑧)))
12594, 113, 1243eqtr4a 2791 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧 = (𝐹(𝑆𝐺)))
126 simplrr 777 . . . . . . . . . . 11 ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → 𝑤 = 𝑍)
127126adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑤 = 𝑍)
128125, 127jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))
12992, 93, 128jca31 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)))
130129ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) → ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))))
131130pm4.71rd 562 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
13287, 131bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))))
133 simprrl 780 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹 = (𝑥𝑧))
134 simpll1 1213 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13588adantl 481 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥 = (𝑦𝐺))
13696adantl 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑦𝐸)
137134, 51syl 17 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
138 simpl3l 1229 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
139138adantr 480 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
140134, 137, 139, 54syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐺𝑇)
141134, 136, 140, 56syl3anc 1373 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑦𝐺) ∈ 𝑇)
142135, 141eqeltrd 2829 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑥𝑇)
14359ad2antrl 728 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑧𝑇)
1446, 35ltrnco 40720 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑧𝑇) → (𝑥𝑧) ∈ 𝑇)
145134, 142, 143, 144syl3anc 1373 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑥𝑧) ∈ 𝑇)
146133, 145eqeltrd 2829 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐹𝑇)
147 simpl1l 1225 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝐾 ∈ HL)
148147adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ HL)
149148hllatd 39364 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝐾 ∈ Lat)
1501, 6, 35, 42trlcl 40165 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) ∈ 𝐵)
151134, 143, 150syl2anc 584 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) ∈ 𝐵)
152 simpl2l 1227 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑋𝐵)
153152adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑋𝐵)
154 simpl1r 1226 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑊𝐻)
155154adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐻)
156155, 23syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → 𝑊𝐵)
157149, 153, 156, 25syl3anc 1373 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) ∈ 𝐵)
158 simprlr 779 . . . . . . . . . . 11 (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) → (𝑅𝑧) (𝑋 𝑊))
159158ad2antrl 728 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) (𝑋 𝑊))
1601, 2, 4latmle1 18430 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑋)
161149, 153, 156, 160syl3anc 1373 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑋 𝑊) 𝑋)
1621, 2, 149, 151, 157, 153, 159, 161lattrd 18412 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → (𝑅𝑧) 𝑋)
163146, 136, 162jca31 514 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) → ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))
164 simprll 778 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑥 = (𝑆𝐺))
165164adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑆𝐺))
166 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑦 = 𝑆)
167166adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦 = 𝑆)
168167fveq1d 6863 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑦𝐺) = (𝑆𝐺))
169165, 168eqtr4d 2768 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑥 = (𝑦𝐺))
170 simprlr 779 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑦𝐸)
171169, 170jca 511 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥 = (𝑦𝐺) ∧ 𝑦𝐸))
172 simprrl 780 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑧 = (𝐹(𝑆𝐺)))
173172adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧 = (𝐹(𝑆𝐺)))
174 simpll1 1213 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
175 simprll 778 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹𝑇)
176167, 170eqeltrrd 2830 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆𝐸)
177174, 51syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
178138adantr 480 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
179174, 177, 178, 54syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐺𝑇)
180174, 176, 179, 100syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
181174, 180, 118syl2anc 584 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺) ∈ 𝑇)
1826, 35ltrnco 40720 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇(𝑆𝐺) ∈ 𝑇) → (𝐹(𝑆𝐺)) ∈ 𝑇)
183174, 175, 181, 182syl3anc 1373 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹(𝑆𝐺)) ∈ 𝑇)
184173, 183eqeltrd 2829 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑧𝑇)
185 simprr 772 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑋)
1862, 6, 35, 42trlle 40185 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇) → (𝑅𝑧) 𝑊)
187174, 184, 186syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) 𝑊)
188147adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ HL)
189188hllatd 39364 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐾 ∈ Lat)
190174, 184, 150syl2anc 584 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) ∈ 𝐵)
191152adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑋𝐵)
192154adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐻)
193192, 23syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑊𝐵)
1941, 2, 4latlem12 18432 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((𝑅𝑧) ∈ 𝐵𝑋𝐵𝑊𝐵)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
195189, 190, 191, 193, 194syl13anc 1374 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑅𝑧) 𝑋 ∧ (𝑅𝑧) 𝑊) ↔ (𝑅𝑧) (𝑋 𝑊)))
196185, 187, 195mpbi2and 712 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑅𝑧) (𝑋 𝑊))
197 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → 𝑤 = 𝑍)
198197adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑤 = 𝑍)
199184, 196, 198jca31 514 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍))
200174, 180, 102syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑆𝐺):𝐵1-1-onto𝐵)
201200, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝑆𝐺)) = ( I ↾ 𝐵))
202201coeq2d 5829 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))) = (𝐹 ∘ ( I ↾ 𝐵)))
2031, 6, 35ltrn1o 40125 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
204174, 175, 203syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹:𝐵1-1-onto𝐵)
205 f1of 6803 . . . . . . . . . . . . . . 15 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
206 fcoi1 6737 . . . . . . . . . . . . . . 15 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
207204, 205, 2063syl 18 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
208202, 207eqtr2d 2766 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺))))
209 coass 6241 . . . . . . . . . . . . 13 ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)) = (𝐹 ∘ ((𝑆𝐺) ∘ (𝑆𝐺)))
210208, 209eqtr4di 2783 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
2116, 35ltrncom 40739 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐺) ∈ 𝑇 ∧ (𝐹(𝑆𝐺)) ∈ 𝑇) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
212174, 180, 183, 211syl3anc 1373 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))) = ((𝐹(𝑆𝐺)) ∘ (𝑆𝐺)))
213210, 212eqtr4d 2768 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
214165, 173coeq12d 5831 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝑥𝑧) = ((𝑆𝐺) ∘ (𝐹(𝑆𝐺))))
215213, 214eqtr4d 2768 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝐹 = (𝑥𝑧))
216167eqcomd 2736 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → 𝑆 = 𝑦)
217215, 216jca 511 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))
218171, 199, 217jca31 514 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) → (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)))
219163, 218impbida 800 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍))) → ((((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦)) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
220219pm5.32da 579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
221 df-3an 1088 . . . . . 6 (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ (((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
222220, 221bitr4di 289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → ((((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍)) ∧ (((𝑥 = (𝑦𝐺) ∧ 𝑦𝐸) ∧ ((𝑧𝑇 ∧ (𝑅𝑧) (𝑋 𝑊)) ∧ 𝑤 = 𝑍)) ∧ (𝐹 = (𝑥𝑧) ∧ 𝑆 = 𝑦))) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
22347, 132, 2223bitrd 305 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
2242234exbidv 1926 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋))))
225 fvex 6874 . . . 4 (𝑆𝐺) ∈ V
226225cnvex 7904 . . . . 5 (𝑆𝐺) ∈ V
22776, 226coex 7909 . . . 4 (𝐹(𝑆𝐺)) ∈ V
22835fvexi 6875 . . . . . 6 𝑇 ∈ V
229228mptex 7200 . . . . 5 (𝑇 ↦ ( I ↾ 𝐵)) ∈ V
23043, 229eqeltri 2825 . . . 4 𝑍 ∈ V
231 biidd 262 . . . 4 (𝑥 = (𝑆𝐺) → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)))
232 eleq1 2817 . . . . . 6 (𝑦 = 𝑆 → (𝑦𝐸𝑆𝐸))
233232anbi2d 630 . . . . 5 (𝑦 = 𝑆 → ((𝐹𝑇𝑦𝐸) ↔ (𝐹𝑇𝑆𝐸)))
234233anbi1d 631 . . . 4 (𝑦 = 𝑆 → (((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋)))
235 fveq2 6861 . . . . . 6 (𝑧 = (𝐹(𝑆𝐺)) → (𝑅𝑧) = (𝑅‘(𝐹(𝑆𝐺))))
236235breq1d 5120 . . . . 5 (𝑧 = (𝐹(𝑆𝐺)) → ((𝑅𝑧) 𝑋 ↔ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
237236anbi2d 630 . . . 4 (𝑧 = (𝐹(𝑆𝐺)) → (((𝐹𝑇𝑆𝐸) ∧ (𝑅𝑧) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
238 biidd 262 . . . 4 (𝑤 = 𝑍 → (((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
239225, 77, 227, 230, 231, 234, 237, 238ceqsex4v 3507 . . 3 (∃𝑥𝑦𝑧𝑤((𝑥 = (𝑆𝐺) ∧ 𝑦 = 𝑆) ∧ (𝑧 = (𝐹(𝑆𝐺)) ∧ 𝑤 = 𝑍) ∧ ((𝐹𝑇𝑦𝐸) ∧ (𝑅𝑧) 𝑋)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋))
240224, 239bitrdi 287 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐶𝑄) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝑁‘(𝑋 𝑊))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
24113, 33, 2403bitrd 305 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110  cmpt 5191   I cid 5535  ccnv 5640  cres 5643  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  crio 7346  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230  lecple 17234  occoc 17235  joincjn 18279  meetcmee 18280  Latclat 18397  LSSumclsm 19571  LSubSpclss 20844  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  TEndoctendo 40753  DVecHcdvh 41079  DIsoBcdib 41139  DIsoCcdic 41173  DIsoHcdih 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230
This theorem is referenced by:  dihopelvalc  41250
  Copyright terms: Public domain W3C validator