Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ceqsrexv2 Structured version   Visualization version   GIF version

Theorem ceqsrexv2 33545
Description: Alternate elimitation of a restricted existential quantifier, using implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017.)
Hypothesis
Ref Expression
ceqsrexv2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsrexv2 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsrexv2
StepHypRef Expression
1 ceqsrexv2.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
21ceqsrexbv 3580 1 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rex 3070
This theorem is referenced by:  ceqsralv2  33547
  Copyright terms: Public domain W3C validator