Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ceqsralv2 | Structured version Visualization version GIF version |
Description: Alternate elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020.) |
Ref | Expression |
---|---|
ceqsralv2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsralv2 | ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsralv2.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | ceqsrexv2 33570 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝜓)) |
4 | rexanali 3191 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑)) | |
5 | annim 403 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝜓) ↔ ¬ (𝐴 ∈ 𝐵 → 𝜓)) | |
6 | 3, 4, 5 | 3bitr3i 300 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ¬ (𝐴 ∈ 𝐵 → 𝜓)) |
7 | 6 | con4bii 320 | 1 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |