Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ceqsralv2 Structured version   Visualization version   GIF version

Theorem ceqsralv2 33572
Description: Alternate elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020.)
Hypothesis
Ref Expression
ceqsralv2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralv2 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralv2
StepHypRef Expression
1 ceqsralv2.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21notbid 317 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
32ceqsrexv2 33570 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ (𝐴𝐵 ∧ ¬ 𝜓))
4 rexanali 3191 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥𝐵 (𝑥 = 𝐴𝜑))
5 annim 403 . . 3 ((𝐴𝐵 ∧ ¬ 𝜓) ↔ ¬ (𝐴𝐵𝜓))
63, 4, 53bitr3i 300 . 2 (¬ ∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ¬ (𝐴𝐵𝜓))
76con4bii 320 1 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator