Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid3 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid3 | ⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5372 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | tpid3 4706 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 𝐷, 〈𝐴, 𝐵〉} |
3 | df-br 5071 | . 2 ⊢ (𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 𝐷, 〈𝐴, 𝐵〉}) | |
4 | 2, 3 | mpbir 234 | 1 ⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 {ctp 4562 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-dif 3887 df-un 3889 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-br 5071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |