Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtpid3 Structured version   Visualization version   GIF version

Theorem brtpid3 34520
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
Assertion
Ref Expression
brtpid3 𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵

Proof of Theorem brtpid3
StepHypRef Expression
1 opex 5457 . . 3 𝐴, 𝐵⟩ ∈ V
21tpid3 4770 . 2 𝐴, 𝐵⟩ ∈ {𝐶, 𝐷, ⟨𝐴, 𝐵⟩}
3 df-br 5142 . 2 (𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {𝐶, 𝐷, ⟨𝐴, 𝐵⟩})
42, 3mpbir 230 1 𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {ctp 4626  cop 4628   class class class wbr 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-br 5142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator