| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid3 | Structured version Visualization version GIF version | ||
| Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| brtpid3 | ⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5432 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | 1 | tpid3 4745 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 𝐷, 〈𝐴, 𝐵〉} |
| 3 | df-br 5116 | . 2 ⊢ (𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 𝐷, 〈𝐴, 𝐵〉}) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {ctp 4601 〈cop 4603 class class class wbr 5115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-br 5116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |