Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtpid3 Structured version   Visualization version   GIF version

Theorem brtpid3 33544
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
Assertion
Ref Expression
brtpid3 𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵

Proof of Theorem brtpid3
StepHypRef Expression
1 opex 5372 . . 3 𝐴, 𝐵⟩ ∈ V
21tpid3 4706 . 2 𝐴, 𝐵⟩ ∈ {𝐶, 𝐷, ⟨𝐴, 𝐵⟩}
3 df-br 5071 . 2 (𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {𝐶, 𝐷, ⟨𝐴, 𝐵⟩})
42, 3mpbir 234 1 𝐴{𝐶, 𝐷, ⟨𝐴, 𝐵⟩}𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  {ctp 4562  cop 4564   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-dif 3887  df-un 3889  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-br 5071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator