Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iota5f Structured version   Visualization version   GIF version

Theorem iota5f 32959
 Description: A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017.)
Hypotheses
Ref Expression
iota5f.1 𝑥𝜑
iota5f.2 𝑥𝐴
iota5f.3 ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))
Assertion
Ref Expression
iota5f ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem iota5f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iota5f.1 . . . 4 𝑥𝜑
2 iota5f.2 . . . . 5 𝑥𝐴
32nfel1 2997 . . . 4 𝑥 𝐴𝑉
41, 3nfan 1899 . . 3 𝑥(𝜑𝐴𝑉)
5 iota5f.3 . . 3 ((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))
64, 5alrimi 2212 . 2 ((𝜑𝐴𝑉) → ∀𝑥(𝜓𝑥 = 𝐴))
72nfeq2 2998 . . . . . 6 𝑥 𝑦 = 𝐴
8 eqeq2 2836 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
98bibi2d 345 . . . . . 6 (𝑦 = 𝐴 → ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑥 = 𝐴)))
107, 9albid 2223 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝜓𝑥 = 𝐴)))
11 eqeq2 2836 . . . . 5 (𝑦 = 𝐴 → ((℩𝑥𝜓) = 𝑦 ↔ (℩𝑥𝜓) = 𝐴))
1210, 11imbi12d 347 . . . 4 (𝑦 = 𝐴 → ((∀𝑥(𝜓𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦) ↔ (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴)))
13 iotaval 6332 . . . 4 (∀𝑥(𝜓𝑥 = 𝑦) → (℩𝑥𝜓) = 𝑦)
1412, 13vtoclg 3570 . . 3 (𝐴𝑉 → (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))
1514adantl 484 . 2 ((𝜑𝐴𝑉) → (∀𝑥(𝜓𝑥 = 𝐴) → (℩𝑥𝜓) = 𝐴))
166, 15mpd 15 1 ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1534   = wceq 1536  Ⅎwnf 1783   ∈ wcel 2113  Ⅎwnfc 2964  ℩cio 6315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-v 3499  df-sbc 3776  df-un 3944  df-in 3946  df-ss 3955  df-sn 4571  df-pr 4573  df-uni 4842  df-iota 6317 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator