MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustab Structured version   Visualization version   GIF version

Theorem cleljustab 2720
Description: Extension of cleljust 2119 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This is an instance of dfclel 2819 where the containing class is a class abstraction. The same remarks as for eleq1ab 2719 apply. (Contributed by BJ, 8-Nov-2021.) (Proof shortened by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
cleljustab (𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cleljustab
StepHypRef Expression
1 eleq1ab 2719 . . 3 (𝑧 = 𝑥 → (𝑧 ∈ {𝑦𝜑} ↔ 𝑥 ∈ {𝑦𝜑}))
21equsexvw 2012 . 2 (∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}) ↔ 𝑥 ∈ {𝑦𝜑})
32bicomi 223 1 (𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1786  wcel 2110  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-sb 2072  df-clab 2718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator