MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustab Structured version   Visualization version   GIF version

Theorem cleljustab 2711
Description: Extension of cleljust 2118 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This is an instance of dfclel 2805 where the containing class is a class abstraction. The same remarks as for eleq1ab 2710 apply. (Contributed by BJ, 8-Nov-2021.) (Proof shortened by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
cleljustab (𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cleljustab
StepHypRef Expression
1 eleq1ab 2710 . . 3 (𝑧 = 𝑥 → (𝑧 ∈ {𝑦𝜑} ↔ 𝑥 ∈ {𝑦𝜑}))
21equsexvw 2005 . 2 (∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}) ↔ 𝑥 ∈ {𝑦𝜑})
32bicomi 224 1 (𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator