MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustab Structured version   Visualization version   GIF version

Theorem cleljustab 2719
Description: Extension of cleljust 2118 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This is an instance of dfclel 2818 where the containing class is a class abstraction. The same remarks as for eleq1ab 2718 apply. (Contributed by BJ, 8-Nov-2021.) (Proof shortened by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
cleljustab (𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cleljustab
StepHypRef Expression
1 eleq1ab 2718 . . 3 (𝑧 = 𝑥 → (𝑧 ∈ {𝑦𝜑} ↔ 𝑥 ∈ {𝑦𝜑}))
21equsexvw 2011 . 2 (∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}) ↔ 𝑥 ∈ {𝑦𝜑})
32bicomi 223 1 (𝑥 ∈ {𝑦𝜑} ↔ ∃𝑧(𝑧 = 𝑥𝑧 ∈ {𝑦𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1785  wcel 2109  {cab 2716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-sb 2071  df-clab 2717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator