MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq1ab Structured version   Visualization version   GIF version

Theorem eleq1ab 2710
Description: Extension (in the sense of Remark 3 of the comment of df-clab 2709) of elequ1 2116 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This extension does not require ax-8 2111 contrary to elequ1 2116, but recall from Remark 3 of the comment of df-clab 2709 that it can be considered an extension only because of cvjust 2724, which does require ax-8 2111.

This is an instance of eleq1w 2812 where the containing class is a class abstraction, and contrary to it, it can be proved without df-clel 2804. See also eleq1 2817 for general classes.

The straightforward yet important fact that this statement can be proved from FOL= plus df-clab 2709 (hence without ax-ext 2702, df-cleq 2722 or df-clel 2804) was stressed by Mario Carneiro. (Contributed by BJ, 17-Aug-2023.)

Assertion
Ref Expression
eleq1ab (𝑥 = 𝑦 → (𝑥 ∈ {𝑧𝜑} ↔ 𝑦 ∈ {𝑧𝜑}))

Proof of Theorem eleq1ab
StepHypRef Expression
1 sbequ 2084 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
2 df-clab 2709 . 2 (𝑥 ∈ {𝑧𝜑} ↔ [𝑥 / 𝑧]𝜑)
3 df-clab 2709 . 2 (𝑦 ∈ {𝑧𝜑} ↔ [𝑦 / 𝑧]𝜑)
41, 2, 33bitr4g 314 1 (𝑥 = 𝑦 → (𝑥 ∈ {𝑧𝜑} ↔ 𝑦 ∈ {𝑧𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2065  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709
This theorem is referenced by:  cleljustab  2711  ralab2  3671  rexab2  3673
  Copyright terms: Public domain W3C validator