MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq1ab Structured version   Visualization version   GIF version

Theorem eleq1ab 2714
Description: Extension (in the sense of Remark 3 of the comment of df-clab 2713) of elequ1 2113 from formulas of the form "setvar setvar" to formulas of the form "setvar class abstraction". This extension does not require ax-8 2108 contrary to elequ1 2113, but recall from Remark 3 of the comment of df-clab 2713 that it can be considered an extension only because of cvjust 2729, which does require ax-8 2108.

This is an instance of eleq1w 2822 where the containing class is a class abstraction, and contrary to it, it can be proved without df-clel 2814. See also eleq1 2827 for general classes.

The straightforward yet important fact that this statement can be proved from FOL= plus df-clab 2713 (hence without ax-ext 2706, df-cleq 2727 or df-clel 2814) was stressed by Mario Carneiro. (Contributed by BJ, 17-Aug-2023.)

Assertion
Ref Expression
eleq1ab (𝑥 = 𝑦 → (𝑥 ∈ {𝑧𝜑} ↔ 𝑦 ∈ {𝑧𝜑}))

Proof of Theorem eleq1ab
StepHypRef Expression
1 sbequ 2081 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
2 df-clab 2713 . 2 (𝑥 ∈ {𝑧𝜑} ↔ [𝑥 / 𝑧]𝜑)
3 df-clab 2713 . 2 (𝑦 ∈ {𝑧𝜑} ↔ [𝑦 / 𝑧]𝜑)
41, 2, 33bitr4g 314 1 (𝑥 = 𝑦 → (𝑥 ∈ {𝑧𝜑} ↔ 𝑦 ∈ {𝑧𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2062  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713
This theorem is referenced by:  cleljustab  2715  ralab2  3706  rexab2  3708
  Copyright terms: Public domain W3C validator