Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compeq Structured version   Visualization version   GIF version

Theorem compeq 42058
Description: Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
compeq (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem compeq
StepHypRef Expression
1 velcomp 3902 . 2 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
21abbi2i 2879 1 (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator