Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compeq Structured version   Visualization version   GIF version

Theorem compeq 44409
Description: Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
compeq (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem compeq
StepHypRef Expression
1 velcomp 3991 . 2 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
21eqabi 2880 1 (V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  cdif 3973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator