Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compne Structured version   Visualization version   GIF version

Theorem compne 41948
Description: The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.)
Assertion
Ref Expression
compne (V ∖ 𝐴) ≠ 𝐴

Proof of Theorem compne
StepHypRef Expression
1 vn0 4269 . 2 V ≠ ∅
2 id 22 . . . . . . 7 ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = 𝐴)
3 difeq1 4046 . . . . . . . 8 ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∖ 𝐴) = (𝐴𝐴))
4 difabs 4224 . . . . . . . 8 ((V ∖ 𝐴) ∖ 𝐴) = (V ∖ 𝐴)
5 difid 4301 . . . . . . . 8 (𝐴𝐴) = ∅
63, 4, 53eqtr3g 2802 . . . . . . 7 ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = ∅)
72, 6eqtr3d 2780 . . . . . 6 ((V ∖ 𝐴) = 𝐴𝐴 = ∅)
87difeq2d 4053 . . . . 5 ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
9 dif0 4303 . . . . 5 (V ∖ ∅) = V
108, 9eqtrdi 2795 . . . 4 ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = V)
1110, 6eqtr3d 2780 . . 3 ((V ∖ 𝐴) = 𝐴 → V = ∅)
1211necon3i 2975 . 2 (V ≠ ∅ → (V ∖ 𝐴) ≠ 𝐴)
131, 12ax-mp 5 1 (V ∖ 𝐴) ≠ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2942  Vcvv 3422  cdif 3880  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator