![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | eqabdv 2878 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1544 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: abid1 2881 cbvralcsf 3966 cbvreucsf 3968 cbvrabcsf 3969 dfsymdif4 4278 dfsymdif2 4280 dfpr2 4668 dftp2 4714 iunid 5083 0iin 5087 pwpwab 5126 epse 5682 pwvabrel 5751 fv3 6938 fo1st 8050 fo2nd 8051 xp2 8067 tfrlem3 8434 ixpconstg 8964 ixp0x 8984 ruv 9671 dfom4 9718 cardnum 10163 alephiso 10167 nnzrab 12671 nn0zrab 12672 qnnen 16261 bdayfo 27740 madeval2 27910 h2hcau 31011 dfch2 31439 hhcno 31936 hhcnf 31937 pjhmopidm 32215 fobigcup 35864 dfsingles2 35885 dfrecs2 35914 dfrdg4 35915 dfint3 35916 bj-snglinv 36938 ecres 38234 dfdm6 38257 ruvALT 42624 rp-abid 43340 dfuniv2 44271 compeq 44409 dfnrm2 48611 dfnrm3 48612 |
Copyright terms: Public domain | W3C validator |