| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2162. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 3 | 2 | eqabdv 2866 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 4 | 3 | mptru 1548 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: abid1 2869 cbvralcsf 3888 cbvreucsf 3890 cbvrabcsf 3891 dfsymdif4 4208 dfsymdif2 4210 dfpr2 4598 dftp2 4645 iunid 5013 0iin 5016 pwpwab 5055 epse 5603 pwvabrel 5672 fv3 6848 fo1st 7949 fo2nd 7950 xp2 7966 tfrlem3 8305 ixpconstg 8838 ixp0x 8858 ruv 9500 dfom4 9548 cardnum 9994 alephiso 9998 nnzrab 12508 nn0zrab 12509 qnnen 16126 bdayfo 27619 madeval2 27797 h2hcau 30963 dfch2 31391 hhcno 31888 hhcnf 31889 pjhmopidm 32167 fobigcup 35965 dfsingles2 35986 dfrecs2 36017 dfrdg4 36018 dfint3 36019 bj-snglinv 37039 ecres 38340 dfdm6 38362 ruvALT 42790 rp-abid 43498 dfuniv2 44422 compeq 44559 dfnrm2 49059 dfnrm3 49060 dftermc2 49648 dftermc3 49659 |
| Copyright terms: Public domain | W3C validator |