| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2160. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 3 | 2 | eqabdv 2864 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 4 | 3 | mptru 1548 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: abid1 2867 cbvralcsf 3892 cbvreucsf 3894 cbvrabcsf 3895 dfsymdif4 4209 dfsymdif2 4211 dfpr2 4597 dftp2 4644 iunid 5009 0iin 5012 pwpwab 5051 epse 5598 pwvabrel 5667 fv3 6840 fo1st 7941 fo2nd 7942 xp2 7958 tfrlem3 8297 ixpconstg 8830 ixp0x 8850 ruv 9491 dfom4 9539 cardnum 9985 alephiso 9989 nnzrab 12500 nn0zrab 12501 qnnen 16122 bdayfo 27617 madeval2 27795 h2hcau 30957 dfch2 31385 hhcno 31882 hhcnf 31883 pjhmopidm 32161 fobigcup 35940 dfsingles2 35961 dfrecs2 35990 dfrdg4 35991 dfint3 35992 bj-snglinv 37012 ecres 38319 dfdm6 38341 ruvALT 42708 rp-abid 43417 dfuniv2 44341 compeq 44478 dfnrm2 48969 dfnrm3 48970 dftermc2 49558 dftermc3 49569 |
| Copyright terms: Public domain | W3C validator |