![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2147. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | eqabdv 2863 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1541 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 {cab 2705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 |
This theorem is referenced by: abid1 2866 cbvralcsf 3937 cbvreucsf 3939 cbvrabcsf 3940 dfsymdif4 4249 dfsymdif2 4251 dfpr2 4648 dftp2 4694 iunid 5063 0iin 5067 pwpwab 5106 epse 5661 pwvabrel 5729 fv3 6915 fo1st 8013 fo2nd 8014 xp2 8030 tfrlem3 8398 ixpconstg 8924 ixp0x 8944 ruv 9625 dfom4 9672 cardnum 10117 alephiso 10121 nnzrab 12620 nn0zrab 12621 qnnen 16189 bdayfo 27609 madeval2 27779 h2hcau 30788 dfch2 31216 hhcno 31713 hhcnf 31714 pjhmopidm 31992 fobigcup 35496 dfsingles2 35517 dfrecs2 35546 dfrdg4 35547 dfint3 35548 bj-snglinv 36451 ecres 37750 dfdm6 37773 ruvALT 42093 rp-abid 42807 dfuniv2 43739 compeq 43877 dfnrm2 47950 dfnrm3 47951 |
Copyright terms: Public domain | W3C validator |