| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 3 | 2 | eqabdv 2862 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 4 | 3 | mptru 1547 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: abid1 2865 cbvralcsf 3907 cbvreucsf 3909 cbvrabcsf 3910 dfsymdif4 4225 dfsymdif2 4227 dfpr2 4613 dftp2 4658 iunid 5027 0iin 5031 pwpwab 5070 epse 5623 pwvabrel 5692 fv3 6879 fo1st 7991 fo2nd 7992 xp2 8008 tfrlem3 8349 ixpconstg 8882 ixp0x 8902 ruv 9562 dfom4 9609 cardnum 10054 alephiso 10058 nnzrab 12568 nn0zrab 12569 qnnen 16188 bdayfo 27596 madeval2 27768 h2hcau 30915 dfch2 31343 hhcno 31840 hhcnf 31841 pjhmopidm 32119 fobigcup 35895 dfsingles2 35916 dfrecs2 35945 dfrdg4 35946 dfint3 35947 bj-snglinv 36967 ecres 38274 dfdm6 38296 ruvALT 42664 rp-abid 43374 dfuniv2 44298 compeq 44436 dfnrm2 48924 dfnrm3 48925 dftermc2 49513 dftermc3 49524 |
| Copyright terms: Public domain | W3C validator |