![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | eqabdv 2867 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1548 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 {cab 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 |
This theorem is referenced by: abid1 2870 cbvralcsf 3938 cbvreucsf 3940 cbvrabcsf 3941 dfsymdif4 4248 dfsymdif2 4250 dfpr2 4647 dftp2 4693 iunid 5063 0iin 5067 pwpwab 5106 epse 5659 pwvabrel 5727 fv3 6909 fo1st 7994 fo2nd 7995 xp2 8011 tfrlem3 8377 ixpconstg 8899 ixp0x 8919 ruv 9596 dfom4 9643 cardnum 10088 alephiso 10092 nnzrab 12589 nn0zrab 12590 qnnen 16155 bdayfo 27177 madeval2 27345 h2hcau 30227 dfch2 30655 hhcno 31152 hhcnf 31153 pjhmopidm 31431 fobigcup 34867 dfsingles2 34888 dfrecs2 34917 dfrdg4 34918 dfint3 34919 bj-snglinv 35848 ecres 37141 dfdm6 37165 ruvALT 41023 rp-abid 42118 dfuniv2 43051 compeq 43189 dfnrm2 47554 dfnrm3 47555 |
Copyright terms: Public domain | W3C validator |