| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2157. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 3 | 2 | eqabdv 2868 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 4 | 3 | mptru 1547 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 {cab 2713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: abid1 2871 cbvralcsf 3916 cbvreucsf 3918 cbvrabcsf 3919 dfsymdif4 4234 dfsymdif2 4236 dfpr2 4622 dftp2 4667 iunid 5036 0iin 5040 pwpwab 5079 epse 5636 pwvabrel 5705 fv3 6894 fo1st 8008 fo2nd 8009 xp2 8025 tfrlem3 8392 ixpconstg 8920 ixp0x 8940 ruv 9616 dfom4 9663 cardnum 10108 alephiso 10112 nnzrab 12620 nn0zrab 12621 qnnen 16231 bdayfo 27641 madeval2 27813 h2hcau 30960 dfch2 31388 hhcno 31885 hhcnf 31886 pjhmopidm 32164 fobigcup 35918 dfsingles2 35939 dfrecs2 35968 dfrdg4 35969 dfint3 35970 bj-snglinv 36990 ecres 38296 dfdm6 38319 ruvALT 42692 rp-abid 43402 dfuniv2 44326 compeq 44464 dfnrm2 48906 dfnrm3 48907 dftermc2 49405 dftermc3 49416 |
| Copyright terms: Public domain | W3C validator |