![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2146. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | eqabdv 2859 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1540 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 {cab 2701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 |
This theorem is referenced by: abid1 2862 cbvralcsf 3931 cbvreucsf 3933 cbvrabcsf 3934 dfsymdif4 4241 dfsymdif2 4243 dfpr2 4640 dftp2 4686 iunid 5054 0iin 5058 pwpwab 5097 epse 5650 pwvabrel 5718 fv3 6900 fo1st 7989 fo2nd 7990 xp2 8006 tfrlem3 8374 ixpconstg 8897 ixp0x 8917 ruv 9594 dfom4 9641 cardnum 10086 alephiso 10090 nnzrab 12589 nn0zrab 12590 qnnen 16159 bdayfo 27550 madeval2 27720 h2hcau 30726 dfch2 31154 hhcno 31651 hhcnf 31652 pjhmopidm 31930 fobigcup 35394 dfsingles2 35415 dfrecs2 35444 dfrdg4 35445 dfint3 35446 bj-snglinv 36353 ecres 37649 dfdm6 37673 ruvALT 41961 rp-abid 42677 dfuniv2 43610 compeq 43748 dfnrm2 47811 dfnrm3 47812 |
Copyright terms: Public domain | W3C validator |