| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 3 | 2 | eqabdv 2861 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 4 | 3 | mptru 1547 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: abid1 2864 cbvralcsf 3895 cbvreucsf 3897 cbvrabcsf 3898 dfsymdif4 4212 dfsymdif2 4214 dfpr2 4600 dftp2 4645 iunid 5012 0iin 5016 pwpwab 5055 epse 5605 pwvabrel 5674 fv3 6844 fo1st 7951 fo2nd 7952 xp2 7968 tfrlem3 8307 ixpconstg 8840 ixp0x 8860 ruv 9516 dfom4 9564 cardnum 10007 alephiso 10011 nnzrab 12521 nn0zrab 12522 qnnen 16140 bdayfo 27605 madeval2 27781 h2hcau 30941 dfch2 31369 hhcno 31866 hhcnf 31867 pjhmopidm 32145 fobigcup 35876 dfsingles2 35897 dfrecs2 35926 dfrdg4 35927 dfint3 35928 bj-snglinv 36948 ecres 38255 dfdm6 38277 ruvALT 42645 rp-abid 43354 dfuniv2 44278 compeq 44416 dfnrm2 48920 dfnrm3 48921 dftermc2 49509 dftermc3 49520 |
| Copyright terms: Public domain | W3C validator |