| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 3 | 2 | eqabdv 2861 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
| 4 | 3 | mptru 1547 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: abid1 2864 cbvralcsf 3904 cbvreucsf 3906 cbvrabcsf 3907 dfsymdif4 4222 dfsymdif2 4224 dfpr2 4610 dftp2 4655 iunid 5024 0iin 5028 pwpwab 5067 epse 5620 pwvabrel 5689 fv3 6876 fo1st 7988 fo2nd 7989 xp2 8005 tfrlem3 8346 ixpconstg 8879 ixp0x 8899 ruv 9555 dfom4 9602 cardnum 10047 alephiso 10051 nnzrab 12561 nn0zrab 12562 qnnen 16181 bdayfo 27589 madeval2 27761 h2hcau 30908 dfch2 31336 hhcno 31833 hhcnf 31834 pjhmopidm 32112 fobigcup 35888 dfsingles2 35909 dfrecs2 35938 dfrdg4 35939 dfint3 35940 bj-snglinv 36960 ecres 38267 dfdm6 38289 ruvALT 42657 rp-abid 43367 dfuniv2 44291 compeq 44429 dfnrm2 48920 dfnrm3 48921 dftermc2 49509 dftermc3 49520 |
| Copyright terms: Public domain | W3C validator |