| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > velcomp | Structured version Visualization version GIF version | ||
| Description: Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| Ref | Expression |
|---|---|
| velcomp | ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | eldif 3909 | . 2 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | 1 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2113 Vcvv 3438 ∖ cdif 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-dif 3902 |
| This theorem is referenced by: rnep 5874 compeq 44546 compab 44548 |
| Copyright terms: Public domain | W3C validator |