MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  velcomp Structured version   Visualization version   GIF version

Theorem velcomp 3902
Description: Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
velcomp (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)

Proof of Theorem velcomp
StepHypRef Expression
1 vex 3436 . 2 𝑥 ∈ V
2 eldif 3897 . 2 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 706 1 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2106  Vcvv 3432  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890
This theorem is referenced by:  rnep  5836  compeq  42058  compab  42060
  Copyright terms: Public domain W3C validator