MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compleq Structured version   Visualization version   GIF version

Theorem compleq 4097
Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
compleq (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵))

Proof of Theorem compleq
StepHypRef Expression
1 complss 4096 . . 3 (𝐴𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴))
2 complss 4096 . . 3 (𝐵𝐴 ↔ (V ∖ 𝐴) ⊆ (V ∖ 𝐵))
31, 2anbi12ci 629 . 2 ((𝐴𝐵𝐵𝐴) ↔ ((V ∖ 𝐴) ⊆ (V ∖ 𝐵) ∧ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)))
4 eqss 3945 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3945 . 2 ((V ∖ 𝐴) = (V ∖ 𝐵) ↔ ((V ∖ 𝐴) ⊆ (V ∖ 𝐵) ∧ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)))
63, 4, 53bitr4i 303 1 (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  Vcvv 3436  cdif 3894  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-ss 3914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator