| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > compleq | Structured version Visualization version GIF version | ||
| Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.) |
| Ref | Expression |
|---|---|
| compleq | ⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | complss 4131 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | |
| 2 | complss 4131 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (V ∖ 𝐴) ⊆ (V ∖ 𝐵)) | |
| 3 | 1, 2 | anbi12ci 629 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((V ∖ 𝐴) ⊆ (V ∖ 𝐵) ∧ (V ∖ 𝐵) ⊆ (V ∖ 𝐴))) |
| 4 | eqss 3979 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3979 | . 2 ⊢ ((V ∖ 𝐴) = (V ∖ 𝐵) ↔ ((V ∖ 𝐴) ⊆ (V ∖ 𝐵) ∧ (V ∖ 𝐵) ⊆ (V ∖ 𝐴))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |