MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  complss Structured version   Visualization version   GIF version

Theorem complss 4174
Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.)
Assertion
Ref Expression
complss (𝐴𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴))

Proof of Theorem complss
StepHypRef Expression
1 sscon 4166 . 2 (𝐴𝐵 → (V ∖ 𝐵) ⊆ (V ∖ 𝐴))
2 sscon 4166 . . 3 ((V ∖ 𝐵) ⊆ (V ∖ 𝐴) → (V ∖ (V ∖ 𝐴)) ⊆ (V ∖ (V ∖ 𝐵)))
3 ddif 4164 . . 3 (V ∖ (V ∖ 𝐴)) = 𝐴
4 ddif 4164 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
52, 3, 43sstr3g 4053 . 2 ((V ∖ 𝐵) ⊆ (V ∖ 𝐴) → 𝐴𝐵)
61, 5impbii 209 1 (𝐴𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  Vcvv 3488  cdif 3973  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993
This theorem is referenced by:  compleq  4175
  Copyright terms: Public domain W3C validator