|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > complss | Structured version Visualization version GIF version | ||
| Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| complss | ⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sscon 4143 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | |
| 2 | sscon 4143 | . . 3 ⊢ ((V ∖ 𝐵) ⊆ (V ∖ 𝐴) → (V ∖ (V ∖ 𝐴)) ⊆ (V ∖ (V ∖ 𝐵))) | |
| 3 | ddif 4141 | . . 3 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | |
| 4 | ddif 4141 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 5 | 2, 3, 4 | 3sstr3g 4036 | . 2 ⊢ ((V ∖ 𝐵) ⊆ (V ∖ 𝐴) → 𝐴 ⊆ 𝐵) | 
| 6 | 1, 5 | impbii 209 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 Vcvv 3480 ∖ cdif 3948 ⊆ wss 3951 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-ss 3968 | 
| This theorem is referenced by: compleq 4152 | 
| Copyright terms: Public domain | W3C validator |