| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1889 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2722 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | df-ss 3931 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3931 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: eqssi 3963 eqssd 3964 sssseq 3965 sseq1 3972 sseq2 3973 ssrabeq 4047 dfpss3 4052 compleq 4115 uneqin 4252 rcompleq 4268 pssdifn0 4331 ss0b 4364 vss 4409 pwpw0 4777 sssn 4790 ssunsn 4792 unidif 4906 ssunieq 4907 uniintsn 4949 iuneq1 4972 iuneq2 4975 iunxdif2 5017 ssext 5414 pweqb 5416 eqopab2bw 5508 eqopab2b 5512 pwun 5531 soeq2 5568 eqrel 5747 eqrelrel 5760 coeq1 5821 coeq2 5822 cnveq 5837 dmeq 5867 relssres 5993 xp11 6148 ssrnres 6151 ordtri4 6369 oneqmini 6385 fnres 6645 eqfnfv3 7005 fneqeql2 7019 dff3 7072 fconst4 7188 f1imaeq 7240 eqoprab2bw 7459 eqoprab2b 7460 iunpw 7747 orduniorsuc 7805 tfi 7829 fo1stres 7994 fo2ndres 7995 tz7.49 8413 oawordeulem 8518 nnacan 8592 nnmcan 8598 ixpeq2 8884 sbthlem3 9053 isinf 9207 isinfOLD 9208 ordunifi 9237 inficl 9376 rankr1c 9774 rankc1 9823 iscard 9928 iscard2 9929 carden2 9940 aleph11 10037 cardaleph 10042 alephinit 10048 dfac12a 10102 cflm 10203 cfslb2n 10221 dfacfin7 10352 wrdeq 14501 isumltss 15814 rpnnen2lem12 16193 isprm2 16652 mrcidb2 17579 smndex2dnrinv 18842 iscyggen2 19811 iscyg3 19816 lssle0 20856 islpir2 21240 iscss2 21595 ishil2 21628 bastop1 22880 epttop 22896 iscld4 22952 0ntr 22958 opnneiid 23013 isperf2 23039 cnntr 23162 ist1-3 23236 perfcls 23252 cmpfi 23295 isconn2 23301 dfconn2 23306 snfil 23751 filconn 23770 ufileu 23806 alexsubALTlem4 23937 metequiv 24397 eqscut2 27718 nbuhgr2vtx1edgblem 29278 iscplgr 29342 shlesb1i 31315 shle0 31371 orthin 31375 chcon2i 31393 chcon3i 31395 chlejb1i 31405 chabs2 31446 h1datomi 31510 cmbr4i 31530 osumcor2i 31573 pjjsi 31629 pjin2i 32122 stcltr2i 32204 mdbr2 32225 dmdbr2 32232 mdsl2i 32251 mdsl2bi 32252 mdslmd3i 32261 chrelat4i 32302 sumdmdlem2 32348 dmdbr5ati 32351 eqdif 32448 eqrelrd2 32544 rspsnasso 33359 dfon2lem9 35779 idsset 35878 fneval 36340 topdifinfeq 37338 equivtotbnd 37772 heiborlem10 37814 eqrel2 38287 relcnveq3 38309 relcnveq2 38311 cossssid 38458 elrelscnveq3 38482 elrelscnveq2 38484 pmap11 39756 dia11N 41042 dia2dimlem5 41062 dib11N 41154 dih11 41259 dihglblem6 41334 doch11 41367 mapd11 41633 mapdcnv11N 41653 sticksstones11 42144 isnacs2 42694 mrefg3 42696 onsupneqmaxlim0 43213 onsupnmax 43217 ontric3g 43511 rababg 43563 relnonrel 43576 uneqsn 44014 ntrk1k3eqk13 44039 ntrneineine1lem 44073 ntrneicls00 44078 ntrneixb 44084 ntrneik13 44087 ntrneix13 44088 joindm2 48956 meetdm2 48958 |
| Copyright terms: Public domain | W3C validator |