| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1889 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2722 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | df-ss 3922 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3922 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 |
| This theorem is referenced by: eqssi 3954 eqssd 3955 sssseq 3956 sseq1 3963 sseq2 3964 ssrabeq 4037 dfpss3 4042 compleq 4105 uneqin 4242 rcompleq 4258 pssdifn0 4321 ss0b 4354 vss 4399 pwpw0 4767 sssn 4780 ssunsn 4782 unidif 4895 ssunieq 4896 uniintsn 4938 iuneq1 4961 iuneq2 4964 iunxdif2 5005 ssext 5401 pweqb 5403 eqopab2bw 5495 eqopab2b 5499 pwun 5516 soeq2 5553 eqrel 5731 eqrelrel 5744 coeq1 5804 coeq2 5805 cnveq 5820 dmeq 5850 relssres 5977 xp11 6128 ssrnres 6131 ordtri4 6348 oneqmini 6364 fnres 6613 eqfnfv3 6971 fneqeql2 6985 dff3 7038 fconst4 7154 f1imaeq 7206 eqoprab2bw 7423 eqoprab2b 7424 iunpw 7711 orduniorsuc 7769 tfi 7793 fo1stres 7957 fo2ndres 7958 tz7.49 8374 oawordeulem 8479 nnacan 8553 nnmcan 8559 ixpeq2 8845 sbthlem3 9013 isinf 9165 isinfOLD 9166 ordunifi 9195 inficl 9334 rankr1c 9736 rankc1 9785 iscard 9890 iscard2 9891 carden2 9902 aleph11 9997 cardaleph 10002 alephinit 10008 dfac12a 10062 cflm 10163 cfslb2n 10181 dfacfin7 10312 wrdeq 14461 isumltss 15773 rpnnen2lem12 16152 isprm2 16611 mrcidb2 17542 smndex2dnrinv 18807 iscyggen2 19778 iscyg3 19783 lssle0 20871 islpir2 21255 iscss2 21611 ishil2 21644 bastop1 22896 epttop 22912 iscld4 22968 0ntr 22974 opnneiid 23029 isperf2 23055 cnntr 23178 ist1-3 23252 perfcls 23268 cmpfi 23311 isconn2 23317 dfconn2 23322 snfil 23767 filconn 23786 ufileu 23822 alexsubALTlem4 23953 metequiv 24413 eqscut2 27735 nbuhgr2vtx1edgblem 29314 iscplgr 29378 shlesb1i 31348 shle0 31404 orthin 31408 chcon2i 31426 chcon3i 31428 chlejb1i 31438 chabs2 31479 h1datomi 31543 cmbr4i 31563 osumcor2i 31606 pjjsi 31662 pjin2i 32155 stcltr2i 32237 mdbr2 32258 dmdbr2 32265 mdsl2i 32284 mdsl2bi 32285 mdslmd3i 32294 chrelat4i 32335 sumdmdlem2 32381 dmdbr5ati 32384 eqdif 32481 eqrelrd2 32577 rspsnasso 33338 dfon2lem9 35767 idsset 35866 fneval 36328 topdifinfeq 37326 equivtotbnd 37760 heiborlem10 37802 eqrel2 38275 relcnveq3 38297 relcnveq2 38299 cossssid 38446 elrelscnveq3 38470 elrelscnveq2 38472 pmap11 39744 dia11N 41030 dia2dimlem5 41050 dib11N 41142 dih11 41247 dihglblem6 41322 doch11 41355 mapd11 41621 mapdcnv11N 41641 sticksstones11 42132 isnacs2 42682 mrefg3 42684 onsupneqmaxlim0 43200 onsupnmax 43204 ontric3g 43498 rababg 43550 relnonrel 43563 uneqsn 44001 ntrk1k3eqk13 44026 ntrneineine1lem 44060 ntrneicls00 44065 ntrneixb 44071 ntrneik13 44074 ntrneix13 44075 joindm2 48956 meetdm2 48958 |
| Copyright terms: Public domain | W3C validator |