![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1886 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2727 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | df-ss 3979 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | df-ss 3979 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1534 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 |
This theorem is referenced by: eqssi 4011 eqssd 4012 sssseq 4013 sseq1 4020 sseq2 4021 ssrabeq 4093 dfpss3 4098 compleq 4161 uneqin 4294 rcompleq 4310 pssdifn0 4373 ss0b 4406 vss 4451 pwpw0 4817 sssn 4830 ssunsn 4832 unidif 4946 ssunieq 4947 uniintsn 4989 iuneq1 5012 iuneq2 5015 iunxdif2 5057 ssext 5464 pweqb 5466 eqopab2bw 5557 eqopab2b 5561 pwun 5580 soeq2 5618 eqrel 5796 eqrelrel 5809 coeq1 5870 coeq2 5871 cnveq 5886 dmeq 5916 relssres 6041 xp11 6196 ssrnres 6199 ordtri4 6422 oneqmini 6437 fnres 6695 eqfnfv3 7052 fneqeql2 7066 dff3 7119 fconst4 7233 f1imaeq 7284 eqoprab2bw 7502 eqoprab2b 7503 iunpw 7789 orduniorsuc 7849 tfi 7873 fo1stres 8038 fo2ndres 8039 wfrlem8OLD 8354 tz7.49 8483 oawordeulem 8590 nnacan 8664 nnmcan 8670 ixpeq2 8949 sbthlem3 9123 isinf 9293 isinfOLD 9294 ordunifi 9323 inficl 9462 rankr1c 9858 rankc1 9907 iscard 10012 iscard2 10013 carden2 10024 aleph11 10121 cardaleph 10126 alephinit 10132 dfac12a 10186 cflm 10287 cfslb2n 10305 dfacfin7 10436 wrdeq 14570 isumltss 15880 rpnnen2lem12 16257 isprm2 16715 mrcidb2 17662 smndex2dnrinv 18940 iscyggen2 19913 iscyg3 19918 lssle0 20965 islpir2 21357 iscss2 21721 ishil2 21756 bastop1 23015 epttop 23031 iscld4 23088 0ntr 23094 opnneiid 23149 isperf2 23175 cnntr 23298 ist1-3 23372 perfcls 23388 cmpfi 23431 isconn2 23437 dfconn2 23442 snfil 23887 filconn 23906 ufileu 23942 alexsubALTlem4 24073 metequiv 24537 eqscut2 27865 nbuhgr2vtx1edgblem 29382 iscplgr 29446 shlesb1i 31414 shle0 31470 orthin 31474 chcon2i 31492 chcon3i 31494 chlejb1i 31504 chabs2 31545 h1datomi 31609 cmbr4i 31629 osumcor2i 31672 pjjsi 31728 pjin2i 32221 stcltr2i 32303 mdbr2 32324 dmdbr2 32331 mdsl2i 32350 mdsl2bi 32351 mdslmd3i 32360 chrelat4i 32401 sumdmdlem2 32447 dmdbr5ati 32450 eqdif 32546 eqrelrd2 32635 rspsnasso 33395 dfon2lem9 35772 idsset 35871 fneval 36334 topdifinfeq 37332 equivtotbnd 37764 heiborlem10 37806 eqrel2 38280 relcnveq3 38302 relcnveq2 38304 cossssid 38448 elrelscnveq3 38472 elrelscnveq2 38474 pmap11 39744 dia11N 41030 dia2dimlem5 41050 dib11N 41142 dih11 41247 dihglblem6 41322 doch11 41355 mapd11 41621 mapdcnv11N 41641 sticksstones11 42137 isnacs2 42693 mrefg3 42695 onsupneqmaxlim0 43212 onsupnmax 43216 ontric3g 43511 rababg 43563 relnonrel 43576 uneqsn 44014 ntrk1k3eqk13 44039 ntrneineine1lem 44073 ntrneicls00 44078 ntrneixb 44084 ntrneik13 44087 ntrneix13 44088 joindm2 48764 meetdm2 48766 |
Copyright terms: Public domain | W3C validator |