![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1871 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2789 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3877 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3877 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 304 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-in 3866 df-ss 3874 |
This theorem is referenced by: eqssi 3905 eqssd 3906 sssseq 3907 sseq1 3913 sseq2 3914 eqimss 3944 ssrabeq 3980 dfpss3 3984 compleq 4045 uneqin 4175 pssdifn0 4245 ss0b 4271 vss 4309 pwpw0 4653 sssn 4666 ssunsn 4668 pwsnALT 4738 unidif 4778 ssunieq 4779 uniintsn 4819 iuneq1 4840 iuneq2 4843 iunxdif2 4876 ssext 5239 pweqb 5241 eqopab2b 5327 pwun 5346 soeq2 5383 eqrel 5544 eqrelrel 5556 coeq1 5614 coeq2 5615 cnveq 5630 dmeq 5658 relssres 5774 xp11 5908 ssrnres 5911 ordtri4 6103 oneqmini 6117 fnres 6344 eqfnfv3 6669 fneqeql2 6682 dff3 6729 fconst4 6843 f1imaeq 6888 eqoprab2b 7083 iunpw 7349 orduniorsuc 7401 tfi 7424 fo1stres 7571 fo2ndres 7572 wfrlem8 7814 tz7.49 7932 oawordeulem 8030 nnacan 8104 nnmcan 8110 ixpeq2 8324 sbthlem3 8476 isinf 8577 ordunifi 8614 inficl 8735 rankr1c 9096 rankc1 9145 iscard 9250 iscard2 9251 carden2 9262 aleph11 9356 cardaleph 9361 alephinit 9367 dfac12a 9420 cflm 9518 cfslb2n 9536 dfacfin7 9667 wrdeq 13732 isumltss 15036 rpnnen2lem12 15411 isprm2 15855 mrcidb2 16718 iscyggen2 18723 iscyg3 18728 lssle0 19411 islpir2 19713 iscss2 20512 ishil2 20545 bastop1 21285 epttop 21301 iscld4 21357 0ntr 21363 opnneiid 21418 isperf2 21444 cnntr 21567 ist1-3 21641 perfcls 21657 cmpfi 21700 isconn2 21706 dfconn2 21711 snfil 22156 filconn 22175 ufileu 22211 alexsubALTlem4 22342 metequiv 22802 nbuhgr2vtx1edgblem 26816 iscplgr 26880 shlesb1i 28854 shle0 28910 orthin 28914 chcon2i 28932 chcon3i 28934 chlejb1i 28944 chabs2 28985 h1datomi 29049 cmbr4i 29069 osumcor2i 29112 pjjsi 29168 pjin2i 29661 stcltr2i 29743 mdbr2 29764 dmdbr2 29771 mdsl2i 29790 mdsl2bi 29791 mdslmd3i 29800 chrelat4i 29841 sumdmdlem2 29887 dmdbr5ati 29890 eqdif 29970 eqrelrd2 30057 dfon2lem9 32645 idsset 32961 fneval 33310 topdifinfeq 34181 equivtotbnd 34607 heiborlem10 34649 eqrel2 35108 relcnveq3 35129 relcnveq2 35131 cossssid 35257 elrelscnveq3 35281 elrelscnveq2 35283 pmap11 36448 dia11N 37734 dia2dimlem5 37754 dib11N 37846 dih11 37951 dihglblem6 38026 doch11 38059 mapd11 38325 mapdcnv11N 38345 isnacs2 38807 mrefg3 38809 ontric3g 39392 rababg 39437 relnonrel 39451 rcompleq 39874 uneqsn 39877 ntrk1k3eqk13 39904 ntrneineine1lem 39938 ntrneicls00 39943 ntrneixb 39949 ntrneik13 39952 ntrneix13 39953 |
Copyright terms: Public domain | W3C validator |