Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1892 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2731 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3907 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3907 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: eqssi 3937 eqssd 3938 sssseq 3939 sseq1 3946 sseq2 3947 eqimss 3977 ssrabeq 4017 dfpss3 4021 compleq 4082 uneqin 4212 rcompleq 4229 pssdifn0 4299 ss0b 4331 vss 4377 pwpw0 4746 sssn 4759 ssunsn 4761 pwsnOLD 4832 unidif 4875 ssunieq 4876 uniintsn 4918 iuneq1 4940 iuneq2 4943 iunxdif2 4983 ssext 5370 pweqb 5372 eqopab2bw 5461 eqopab2b 5465 pwun 5487 soeq2 5525 eqrel 5695 eqrelrel 5707 coeq1 5766 coeq2 5767 cnveq 5782 dmeq 5812 relssres 5932 xp11 6078 ssrnres 6081 ordtri4 6303 oneqmini 6317 fnres 6559 eqfnfv3 6911 fneqeql2 6924 dff3 6976 fconst4 7090 f1imaeq 7138 eqoprab2bw 7345 eqoprab2b 7346 iunpw 7621 orduniorsuc 7677 tfi 7700 fo1stres 7857 fo2ndres 7858 wfrlem8OLD 8147 tz7.49 8276 oawordeulem 8385 nnacan 8459 nnmcan 8465 ixpeq2 8699 sbthlem3 8872 isinf 9036 ordunifi 9064 inficl 9184 rankr1c 9579 rankc1 9628 iscard 9733 iscard2 9734 carden2 9745 aleph11 9840 cardaleph 9845 alephinit 9851 dfac12a 9904 cflm 10006 cfslb2n 10024 dfacfin7 10155 wrdeq 14239 isumltss 15560 rpnnen2lem12 15934 isprm2 16387 mrcidb2 17327 smndex2dnrinv 18554 iscyggen2 19481 iscyg3 19486 lssle0 20211 islpir2 20522 iscss2 20891 ishil2 20926 bastop1 22143 epttop 22159 iscld4 22216 0ntr 22222 opnneiid 22277 isperf2 22303 cnntr 22426 ist1-3 22500 perfcls 22516 cmpfi 22559 isconn2 22565 dfconn2 22570 snfil 23015 filconn 23034 ufileu 23070 alexsubALTlem4 23201 metequiv 23665 nbuhgr2vtx1edgblem 27718 iscplgr 27782 shlesb1i 29748 shle0 29804 orthin 29808 chcon2i 29826 chcon3i 29828 chlejb1i 29838 chabs2 29879 h1datomi 29943 cmbr4i 29963 osumcor2i 30006 pjjsi 30062 pjin2i 30555 stcltr2i 30637 mdbr2 30658 dmdbr2 30665 mdsl2i 30684 mdsl2bi 30685 mdslmd3i 30694 chrelat4i 30735 sumdmdlem2 30781 dmdbr5ati 30784 eqdif 30866 eqrelrd2 30956 dfon2lem9 33767 eqscut2 34000 idsset 34192 fneval 34541 topdifinfeq 35521 equivtotbnd 35936 heiborlem10 35978 eqrel2 36435 relcnveq3 36456 relcnveq2 36458 cossssid 36585 elrelscnveq3 36609 elrelscnveq2 36611 pmap11 37776 dia11N 39062 dia2dimlem5 39082 dib11N 39174 dih11 39279 dihglblem6 39354 doch11 39387 mapd11 39653 mapdcnv11N 39673 sticksstones11 40112 isnacs2 40528 mrefg3 40530 ontric3g 41129 rababg 41181 relnonrel 41195 uneqsn 41633 ntrk1k3eqk13 41660 ntrneineine1lem 41694 ntrneicls00 41699 ntrneixb 41705 ntrneik13 41708 ntrneix13 41709 joindm2 46262 meetdm2 46264 |
Copyright terms: Public domain | W3C validator |