Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1893 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2731 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3903 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3903 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: eqssi 3933 eqssd 3934 sssseq 3935 sseq1 3942 sseq2 3943 eqimss 3973 ssrabeq 4013 dfpss3 4017 compleq 4078 uneqin 4209 rcompleq 4226 pssdifn0 4296 ss0b 4328 vss 4374 pwpw0 4743 sssn 4756 ssunsn 4758 pwsnOLD 4829 unidif 4872 ssunieq 4873 uniintsn 4915 iuneq1 4937 iuneq2 4940 iunxdif2 4979 ssext 5364 pweqb 5366 eqopab2bw 5454 eqopab2b 5458 pwun 5478 soeq2 5516 eqrel 5684 eqrelrel 5696 coeq1 5755 coeq2 5756 cnveq 5771 dmeq 5801 relssres 5921 xp11 6067 ssrnres 6070 ordtri4 6288 oneqmini 6302 fnres 6543 eqfnfv3 6893 fneqeql2 6906 dff3 6958 fconst4 7072 f1imaeq 7119 eqoprab2bw 7323 eqoprab2b 7324 iunpw 7599 orduniorsuc 7652 tfi 7675 fo1stres 7830 fo2ndres 7831 wfrlem8OLD 8118 tz7.49 8246 oawordeulem 8347 nnacan 8421 nnmcan 8427 ixpeq2 8657 sbthlem3 8825 isinf 8965 ordunifi 8994 inficl 9114 rankr1c 9510 rankc1 9559 iscard 9664 iscard2 9665 carden2 9676 aleph11 9771 cardaleph 9776 alephinit 9782 dfac12a 9835 cflm 9937 cfslb2n 9955 dfacfin7 10086 wrdeq 14167 isumltss 15488 rpnnen2lem12 15862 isprm2 16315 mrcidb2 17244 smndex2dnrinv 18469 iscyggen2 19396 iscyg3 19401 lssle0 20126 islpir2 20435 iscss2 20803 ishil2 20836 bastop1 22051 epttop 22067 iscld4 22124 0ntr 22130 opnneiid 22185 isperf2 22211 cnntr 22334 ist1-3 22408 perfcls 22424 cmpfi 22467 isconn2 22473 dfconn2 22478 snfil 22923 filconn 22942 ufileu 22978 alexsubALTlem4 23109 metequiv 23571 nbuhgr2vtx1edgblem 27621 iscplgr 27685 shlesb1i 29649 shle0 29705 orthin 29709 chcon2i 29727 chcon3i 29729 chlejb1i 29739 chabs2 29780 h1datomi 29844 cmbr4i 29864 osumcor2i 29907 pjjsi 29963 pjin2i 30456 stcltr2i 30538 mdbr2 30559 dmdbr2 30566 mdsl2i 30585 mdsl2bi 30586 mdslmd3i 30595 chrelat4i 30636 sumdmdlem2 30682 dmdbr5ati 30685 eqdif 30767 eqrelrd2 30857 dfon2lem9 33673 eqscut2 33927 idsset 34119 fneval 34468 topdifinfeq 35448 equivtotbnd 35863 heiborlem10 35905 eqrel2 36362 relcnveq3 36383 relcnveq2 36385 cossssid 36512 elrelscnveq3 36536 elrelscnveq2 36538 pmap11 37703 dia11N 38989 dia2dimlem5 39009 dib11N 39101 dih11 39206 dihglblem6 39281 doch11 39314 mapd11 39580 mapdcnv11N 39600 sticksstones11 40040 isnacs2 40444 mrefg3 40446 ontric3g 41027 rababg 41070 relnonrel 41084 uneqsn 41522 ntrk1k3eqk13 41549 ntrneineine1lem 41583 ntrneicls00 41588 ntrneixb 41594 ntrneik13 41597 ntrneix13 41598 joindm2 46150 meetdm2 46152 |
Copyright terms: Public domain | W3C validator |