| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1889 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2730 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | df-ss 3968 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3968 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-ss 3968 |
| This theorem is referenced by: eqssi 4000 eqssd 4001 sssseq 4002 sseq1 4009 sseq2 4010 ssrabeq 4084 dfpss3 4089 compleq 4152 uneqin 4289 rcompleq 4305 pssdifn0 4368 ss0b 4401 vss 4446 pwpw0 4813 sssn 4826 ssunsn 4828 unidif 4942 ssunieq 4943 uniintsn 4985 iuneq1 5008 iuneq2 5011 iunxdif2 5053 ssext 5459 pweqb 5461 eqopab2bw 5553 eqopab2b 5557 pwun 5576 soeq2 5614 eqrel 5794 eqrelrel 5807 coeq1 5868 coeq2 5869 cnveq 5884 dmeq 5914 relssres 6040 xp11 6195 ssrnres 6198 ordtri4 6421 oneqmini 6436 fnres 6695 eqfnfv3 7053 fneqeql2 7067 dff3 7120 fconst4 7234 f1imaeq 7285 eqoprab2bw 7503 eqoprab2b 7504 iunpw 7791 orduniorsuc 7850 tfi 7874 fo1stres 8040 fo2ndres 8041 wfrlem8OLD 8356 tz7.49 8485 oawordeulem 8592 nnacan 8666 nnmcan 8672 ixpeq2 8951 sbthlem3 9125 isinf 9296 isinfOLD 9297 ordunifi 9326 inficl 9465 rankr1c 9861 rankc1 9910 iscard 10015 iscard2 10016 carden2 10027 aleph11 10124 cardaleph 10129 alephinit 10135 dfac12a 10189 cflm 10290 cfslb2n 10308 dfacfin7 10439 wrdeq 14574 isumltss 15884 rpnnen2lem12 16261 isprm2 16719 mrcidb2 17661 smndex2dnrinv 18928 iscyggen2 19899 iscyg3 19904 lssle0 20948 islpir2 21340 iscss2 21704 ishil2 21739 bastop1 23000 epttop 23016 iscld4 23073 0ntr 23079 opnneiid 23134 isperf2 23160 cnntr 23283 ist1-3 23357 perfcls 23373 cmpfi 23416 isconn2 23422 dfconn2 23427 snfil 23872 filconn 23891 ufileu 23927 alexsubALTlem4 24058 metequiv 24522 eqscut2 27851 nbuhgr2vtx1edgblem 29368 iscplgr 29432 shlesb1i 31405 shle0 31461 orthin 31465 chcon2i 31483 chcon3i 31485 chlejb1i 31495 chabs2 31536 h1datomi 31600 cmbr4i 31620 osumcor2i 31663 pjjsi 31719 pjin2i 32212 stcltr2i 32294 mdbr2 32315 dmdbr2 32322 mdsl2i 32341 mdsl2bi 32342 mdslmd3i 32351 chrelat4i 32392 sumdmdlem2 32438 dmdbr5ati 32441 eqdif 32538 eqrelrd2 32628 rspsnasso 33416 dfon2lem9 35792 idsset 35891 fneval 36353 topdifinfeq 37351 equivtotbnd 37785 heiborlem10 37827 eqrel2 38300 relcnveq3 38322 relcnveq2 38324 cossssid 38468 elrelscnveq3 38492 elrelscnveq2 38494 pmap11 39764 dia11N 41050 dia2dimlem5 41070 dib11N 41162 dih11 41267 dihglblem6 41342 doch11 41375 mapd11 41641 mapdcnv11N 41661 sticksstones11 42157 isnacs2 42717 mrefg3 42719 onsupneqmaxlim0 43236 onsupnmax 43240 ontric3g 43535 rababg 43587 relnonrel 43600 uneqsn 44038 ntrk1k3eqk13 44063 ntrneineine1lem 44097 ntrneicls00 44102 ntrneixb 44108 ntrneik13 44111 ntrneix13 44112 joindm2 48865 meetdm2 48867 |
| Copyright terms: Public domain | W3C validator |