![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1888 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2733 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | df-ss 3993 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | df-ss 3993 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: eqssi 4025 eqssd 4026 sssseq 4027 sseq1 4034 sseq2 4035 ssrabeq 4107 dfpss3 4112 compleq 4175 uneqin 4308 rcompleq 4324 pssdifn0 4391 ss0b 4424 vss 4469 pwpw0 4838 sssn 4851 ssunsn 4853 unidif 4966 ssunieq 4967 uniintsn 5009 iuneq1 5031 iuneq2 5034 iunxdif2 5076 ssext 5474 pweqb 5476 eqopab2bw 5567 eqopab2b 5571 pwun 5591 soeq2 5630 eqrel 5808 eqrelrel 5821 coeq1 5882 coeq2 5883 cnveq 5898 dmeq 5928 relssres 6051 xp11 6206 ssrnres 6209 ordtri4 6432 oneqmini 6447 fnres 6707 eqfnfv3 7066 fneqeql2 7080 dff3 7134 fconst4 7251 f1imaeq 7302 eqoprab2bw 7520 eqoprab2b 7521 iunpw 7806 orduniorsuc 7866 tfi 7890 fo1stres 8056 fo2ndres 8057 wfrlem8OLD 8372 tz7.49 8501 oawordeulem 8610 nnacan 8684 nnmcan 8690 ixpeq2 8969 sbthlem3 9151 isinf 9323 isinfOLD 9324 ordunifi 9354 inficl 9494 rankr1c 9890 rankc1 9939 iscard 10044 iscard2 10045 carden2 10056 aleph11 10153 cardaleph 10158 alephinit 10164 dfac12a 10218 cflm 10319 cfslb2n 10337 dfacfin7 10468 wrdeq 14584 isumltss 15896 rpnnen2lem12 16273 isprm2 16729 mrcidb2 17676 smndex2dnrinv 18950 iscyggen2 19923 iscyg3 19928 lssle0 20971 islpir2 21363 iscss2 21727 ishil2 21762 bastop1 23021 epttop 23037 iscld4 23094 0ntr 23100 opnneiid 23155 isperf2 23181 cnntr 23304 ist1-3 23378 perfcls 23394 cmpfi 23437 isconn2 23443 dfconn2 23448 snfil 23893 filconn 23912 ufileu 23948 alexsubALTlem4 24079 metequiv 24543 eqscut2 27869 nbuhgr2vtx1edgblem 29386 iscplgr 29450 shlesb1i 31418 shle0 31474 orthin 31478 chcon2i 31496 chcon3i 31498 chlejb1i 31508 chabs2 31549 h1datomi 31613 cmbr4i 31633 osumcor2i 31676 pjjsi 31732 pjin2i 32225 stcltr2i 32307 mdbr2 32328 dmdbr2 32335 mdsl2i 32354 mdsl2bi 32355 mdslmd3i 32364 chrelat4i 32405 sumdmdlem2 32451 dmdbr5ati 32454 eqdif 32549 eqrelrd2 32638 rspsnasso 33381 dfon2lem9 35755 idsset 35854 fneval 36318 topdifinfeq 37316 equivtotbnd 37738 heiborlem10 37780 eqrel2 38255 relcnveq3 38277 relcnveq2 38279 cossssid 38423 elrelscnveq3 38447 elrelscnveq2 38449 pmap11 39719 dia11N 41005 dia2dimlem5 41025 dib11N 41117 dih11 41222 dihglblem6 41297 doch11 41330 mapd11 41596 mapdcnv11N 41616 sticksstones11 42113 isnacs2 42662 mrefg3 42664 onsupneqmaxlim0 43185 onsupnmax 43189 ontric3g 43484 rababg 43536 relnonrel 43549 uneqsn 43987 ntrk1k3eqk13 44012 ntrneineine1lem 44046 ntrneicls00 44051 ntrneixb 44057 ntrneik13 44060 ntrneix13 44061 joindm2 48648 meetdm2 48650 |
Copyright terms: Public domain | W3C validator |