| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1889 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2729 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | df-ss 3948 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3948 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 |
| This theorem is referenced by: eqssi 3980 eqssd 3981 sssseq 3982 sseq1 3989 sseq2 3990 ssrabeq 4064 dfpss3 4069 compleq 4132 uneqin 4269 rcompleq 4285 pssdifn0 4348 ss0b 4381 vss 4426 pwpw0 4794 sssn 4807 ssunsn 4809 unidif 4923 ssunieq 4924 uniintsn 4966 iuneq1 4989 iuneq2 4992 iunxdif2 5034 ssext 5434 pweqb 5436 eqopab2bw 5528 eqopab2b 5532 pwun 5551 soeq2 5588 eqrel 5768 eqrelrel 5781 coeq1 5842 coeq2 5843 cnveq 5858 dmeq 5888 relssres 6014 xp11 6169 ssrnres 6172 ordtri4 6394 oneqmini 6410 fnres 6670 eqfnfv3 7028 fneqeql2 7042 dff3 7095 fconst4 7211 f1imaeq 7263 eqoprab2bw 7482 eqoprab2b 7483 iunpw 7770 orduniorsuc 7829 tfi 7853 fo1stres 8019 fo2ndres 8020 wfrlem8OLD 8335 tz7.49 8464 oawordeulem 8571 nnacan 8645 nnmcan 8651 ixpeq2 8930 sbthlem3 9104 isinf 9273 isinfOLD 9274 ordunifi 9303 inficl 9442 rankr1c 9840 rankc1 9889 iscard 9994 iscard2 9995 carden2 10006 aleph11 10103 cardaleph 10108 alephinit 10114 dfac12a 10168 cflm 10269 cfslb2n 10287 dfacfin7 10418 wrdeq 14559 isumltss 15869 rpnnen2lem12 16248 isprm2 16706 mrcidb2 17635 smndex2dnrinv 18898 iscyggen2 19867 iscyg3 19872 lssle0 20912 islpir2 21296 iscss2 21651 ishil2 21684 bastop1 22936 epttop 22952 iscld4 23008 0ntr 23014 opnneiid 23069 isperf2 23095 cnntr 23218 ist1-3 23292 perfcls 23308 cmpfi 23351 isconn2 23357 dfconn2 23362 snfil 23807 filconn 23826 ufileu 23862 alexsubALTlem4 23993 metequiv 24453 eqscut2 27775 nbuhgr2vtx1edgblem 29335 iscplgr 29399 shlesb1i 31372 shle0 31428 orthin 31432 chcon2i 31450 chcon3i 31452 chlejb1i 31462 chabs2 31503 h1datomi 31567 cmbr4i 31587 osumcor2i 31630 pjjsi 31686 pjin2i 32179 stcltr2i 32261 mdbr2 32282 dmdbr2 32289 mdsl2i 32308 mdsl2bi 32309 mdslmd3i 32318 chrelat4i 32359 sumdmdlem2 32405 dmdbr5ati 32408 eqdif 32505 eqrelrd2 32601 rspsnasso 33408 dfon2lem9 35814 idsset 35913 fneval 36375 topdifinfeq 37373 equivtotbnd 37807 heiborlem10 37849 eqrel2 38322 relcnveq3 38344 relcnveq2 38346 cossssid 38490 elrelscnveq3 38514 elrelscnveq2 38516 pmap11 39786 dia11N 41072 dia2dimlem5 41092 dib11N 41184 dih11 41289 dihglblem6 41364 doch11 41397 mapd11 41663 mapdcnv11N 41683 sticksstones11 42174 isnacs2 42704 mrefg3 42706 onsupneqmaxlim0 43223 onsupnmax 43227 ontric3g 43521 rababg 43573 relnonrel 43586 uneqsn 44024 ntrk1k3eqk13 44049 ntrneineine1lem 44083 ntrneicls00 44088 ntrneixb 44094 ntrneik13 44097 ntrneix13 44098 joindm2 48922 meetdm2 48924 |
| Copyright terms: Public domain | W3C validator |