| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1890 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2726 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | df-ss 3915 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3915 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 |
| This theorem is referenced by: eqssi 3947 eqssd 3948 sssseq 3949 sseq1 3956 sseq2 3957 ssrabeq 4033 dfpss3 4038 compleq 4101 uneqin 4238 rcompleq 4254 pssdifn0 4317 ss0b 4350 vss 4395 pwpw0 4766 sssn 4779 ssunsn 4781 unidif 4895 ssunieq 4896 uniintsn 4937 iuneq1 4960 iuneq2 4963 iunxdif2 5006 ssext 5399 pweqb 5401 eqopab2bw 5493 eqopab2b 5497 pwun 5514 soeq2 5551 eqrel 5730 eqrelrel 5743 coeq1 5803 coeq2 5804 cnveq 5819 dmeq 5849 relssres 5977 xp11 6129 ssrnres 6132 ordtri4 6350 oneqmini 6366 fnres 6615 eqfnfv3 6974 fneqeql2 6988 dff3 7041 fconst4 7156 f1imaeq 7207 eqoprab2bw 7424 eqoprab2b 7425 iunpw 7712 orduniorsuc 7768 tfi 7791 fo1stres 7955 fo2ndres 7956 tz7.49 8372 oawordeulem 8477 nnacan 8551 nnmcan 8557 ixpeq2 8843 sbthlem3 9011 isinf 9158 ordunifi 9183 inficl 9318 rankr1c 9723 rankc1 9772 iscard 9877 iscard2 9878 carden2 9889 aleph11 9984 cardaleph 9989 alephinit 9995 dfac12a 10049 cflm 10150 cfslb2n 10168 dfacfin7 10299 wrdeq 14447 isumltss 15759 rpnnen2lem12 16138 isprm2 16597 mrcidb2 17528 smndex2dnrinv 18827 iscyggen2 19797 iscyg3 19802 lssle0 20887 islpir2 21271 iscss2 21627 ishil2 21660 bastop1 22911 epttop 22927 iscld4 22983 0ntr 22989 opnneiid 23044 isperf2 23070 cnntr 23193 ist1-3 23267 perfcls 23283 cmpfi 23326 isconn2 23332 dfconn2 23337 snfil 23782 filconn 23801 ufileu 23837 alexsubALTlem4 23968 metequiv 24427 eqscut2 27750 nbuhgr2vtx1edgblem 29333 iscplgr 29397 shlesb1i 31370 shle0 31426 orthin 31430 chcon2i 31448 chcon3i 31450 chlejb1i 31460 chabs2 31501 h1datomi 31565 cmbr4i 31585 osumcor2i 31628 pjjsi 31684 pjin2i 32177 stcltr2i 32259 mdbr2 32280 dmdbr2 32287 mdsl2i 32306 mdsl2bi 32307 mdslmd3i 32316 chrelat4i 32357 sumdmdlem2 32403 dmdbr5ati 32406 eqdif 32503 eqrelrd2 32603 rspsnasso 33362 dfon2lem9 35856 idsset 35955 fneval 36419 topdifinfeq 37417 equivtotbnd 37841 heiborlem10 37883 eqrel2 38360 relcnveq3 38382 relcnveq2 38384 cossssid 38592 elrelscnveq3 38662 elrelscnveq2 38664 pmap11 39884 dia11N 41170 dia2dimlem5 41190 dib11N 41282 dih11 41387 dihglblem6 41462 doch11 41495 mapd11 41761 mapdcnv11N 41781 sticksstones11 42272 isnacs2 42826 mrefg3 42828 onsupneqmaxlim0 43344 onsupnmax 43348 ontric3g 43642 rababg 43694 relnonrel 43707 uneqsn 44145 ntrk1k3eqk13 44170 ntrneineine1lem 44204 ntrneicls00 44209 ntrneixb 44215 ntrneik13 44218 ntrneix13 44219 joindm2 49095 meetdm2 49097 |
| Copyright terms: Public domain | W3C validator |