| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqss | Structured version Visualization version GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 21-May-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1890 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2724 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | df-ss 3919 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | df-ss 3919 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 |
| This theorem is referenced by: eqssi 3951 eqssd 3952 sssseq 3953 sseq1 3960 sseq2 3961 ssrabeq 4034 dfpss3 4039 compleq 4102 uneqin 4239 rcompleq 4255 pssdifn0 4318 ss0b 4351 vss 4396 pwpw0 4765 sssn 4778 ssunsn 4780 unidif 4893 ssunieq 4894 uniintsn 4935 iuneq1 4958 iuneq2 4961 iunxdif2 5002 ssext 5395 pweqb 5397 eqopab2bw 5488 eqopab2b 5492 pwun 5509 soeq2 5546 eqrel 5724 eqrelrel 5737 coeq1 5797 coeq2 5798 cnveq 5813 dmeq 5843 relssres 5971 xp11 6122 ssrnres 6125 ordtri4 6343 oneqmini 6359 fnres 6608 eqfnfv3 6966 fneqeql2 6980 dff3 7033 fconst4 7148 f1imaeq 7199 eqoprab2bw 7416 eqoprab2b 7417 iunpw 7704 orduniorsuc 7760 tfi 7783 fo1stres 7947 fo2ndres 7948 tz7.49 8364 oawordeulem 8469 nnacan 8543 nnmcan 8549 ixpeq2 8835 sbthlem3 9002 isinf 9149 ordunifi 9174 inficl 9309 rankr1c 9714 rankc1 9763 iscard 9868 iscard2 9869 carden2 9880 aleph11 9975 cardaleph 9980 alephinit 9986 dfac12a 10040 cflm 10141 cfslb2n 10159 dfacfin7 10290 wrdeq 14443 isumltss 15755 rpnnen2lem12 16134 isprm2 16593 mrcidb2 17524 smndex2dnrinv 18823 iscyggen2 19794 iscyg3 19799 lssle0 20884 islpir2 21268 iscss2 21624 ishil2 21657 bastop1 22909 epttop 22925 iscld4 22981 0ntr 22987 opnneiid 23042 isperf2 23068 cnntr 23191 ist1-3 23265 perfcls 23281 cmpfi 23324 isconn2 23330 dfconn2 23335 snfil 23780 filconn 23799 ufileu 23835 alexsubALTlem4 23966 metequiv 24425 eqscut2 27748 nbuhgr2vtx1edgblem 29330 iscplgr 29394 shlesb1i 31364 shle0 31420 orthin 31424 chcon2i 31442 chcon3i 31444 chlejb1i 31454 chabs2 31495 h1datomi 31559 cmbr4i 31579 osumcor2i 31622 pjjsi 31678 pjin2i 32171 stcltr2i 32253 mdbr2 32274 dmdbr2 32281 mdsl2i 32300 mdsl2bi 32301 mdslmd3i 32310 chrelat4i 32351 sumdmdlem2 32397 dmdbr5ati 32400 eqdif 32497 eqrelrd2 32597 rspsnasso 33351 dfon2lem9 35831 idsset 35930 fneval 36392 topdifinfeq 37390 equivtotbnd 37824 heiborlem10 37866 eqrel2 38339 relcnveq3 38361 relcnveq2 38363 cossssid 38510 elrelscnveq3 38534 elrelscnveq2 38536 pmap11 39807 dia11N 41093 dia2dimlem5 41113 dib11N 41205 dih11 41310 dihglblem6 41385 doch11 41418 mapd11 41684 mapdcnv11N 41704 sticksstones11 42195 isnacs2 42745 mrefg3 42747 onsupneqmaxlim0 43263 onsupnmax 43267 ontric3g 43561 rababg 43613 relnonrel 43626 uneqsn 44064 ntrk1k3eqk13 44089 ntrneineine1lem 44123 ntrneicls00 44128 ntrneixb 44134 ntrneik13 44137 ntrneix13 44138 joindm2 49005 meetdm2 49007 |
| Copyright terms: Public domain | W3C validator |