Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTVD Structured version   Visualization version   GIF version

Theorem csbfv12gALTVD 45016
Description: Virtual deduction proof of csbfv12 6873. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12 6873 is csbfv12gALTVD 45016 without virtual deductions and was automatically derived from csbfv12gALTVD 45016.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = { 𝑦}   )
3:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
4:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
5:4: (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
6:3,5: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
7:1: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
8:6,2: (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ { 𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
9:7,8: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})    )
10:9: (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
11:10: (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
12:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
13:11,12: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦 }}   )
14:13: (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 {𝐴 / 𝑥𝐵}) = {𝑦}}   )
15:1: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
16:14,15: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
17:: (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
18:17: 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}}
19:1,18: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
20:16,19: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
21:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
22:20,21: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:22: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTVD (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbfv12gALTVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44692 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴𝐶   )
2 sbceqg 4361 . . . . . . . . . . 11 (𝐴𝐶 → ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}))
31, 2e1a 44745 . . . . . . . . . 10 (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
4 csbima12 6032 . . . . . . . . . . . . . 14 𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})
54a1i 11 . . . . . . . . . . . . 13 (𝐴𝐶𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}))
61, 5e1a 44745 . . . . . . . . . . . 12 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
7 csbsng 4660 . . . . . . . . . . . . . 14 (𝐴𝐶𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
81, 7e1a 44745 . . . . . . . . . . . . 13 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
9 imaeq2 6009 . . . . . . . . . . . . 13 (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} → (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}))
108, 9e1a 44745 . . . . . . . . . . . 12 (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
11 eqeq1 2737 . . . . . . . . . . . . 13 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) → (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) ↔ (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})))
1211biimprd 248 . . . . . . . . . . . 12 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) → ((𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) → 𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})))
136, 10, 12e11 44806 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
14 csbconstg 3865 . . . . . . . . . . . 12 (𝐴𝐶𝐴 / 𝑥{𝑦} = {𝑦})
151, 14e1a 44745 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = {𝑦}   )
16 eqeq12 2750 . . . . . . . . . . . 12 ((𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) ∧ 𝐴 / 𝑥{𝑦} = {𝑦}) → (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}))
1716ex 412 . . . . . . . . . . 11 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) → (𝐴 / 𝑥{𝑦} = {𝑦} → (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
1813, 15, 17e11 44806 . . . . . . . . . 10 (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
19 bibi1 351 . . . . . . . . . . 11 (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}) → (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) ↔ (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
2019biimprd 248 . . . . . . . . . 10 (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}) → ((𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) → ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
213, 18, 20e11 44806 . . . . . . . . 9 (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
2221gen11 44734 . . . . . . . 8 (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
23 abbib 2802 . . . . . . . . 9 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} ↔ ∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}))
2423biimpri 228 . . . . . . . 8 (∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) → {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
2522, 24e1a 44745 . . . . . . 7 (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
26 csbab 4389 . . . . . . . . 9 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}
2726a1i 11 . . . . . . . 8 (𝐴𝐶𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}})
281, 27e1a 44745 . . . . . . 7 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
29 eqeq2 2745 . . . . . . . 8 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3029biimpd 229 . . . . . . 7 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3125, 28, 30e11 44806 . . . . . 6 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
32 unieq 4869 . . . . . 6 (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
3331, 32e1a 44745 . . . . 5 (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
34 csbuni 4888 . . . . . . 7 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
3534a1i 11 . . . . . 6 (𝐴𝐶𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}})
361, 35e1a 44745 . . . . 5 (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
37 eqeq2 2745 . . . . . 6 ( 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3837biimpd 229 . . . . 5 ( 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3933, 36, 38e11 44806 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
40 dffv4 6825 . . . . . 6 (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
4140ax-gen 1796 . . . . 5 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
42 csbeq2 3851 . . . . . 6 (∀𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}})
4342a1i 11 . . . . 5 (𝐴𝐶 → (∀𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}))
441, 41, 43e10 44812 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
45 eqeq2 2745 . . . . 5 (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
4645biimpd 229 . . . 4 (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
4739, 44, 46e11 44806 . . 3 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
48 dffv4 6825 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
49 eqeq2 2745 . . . 4 ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
5049biimprcd 250 . . 3 (𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
5147, 48, 50e10 44812 . 2 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
5251in1 44689 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2113  {cab 2711  [wsbc 3737  csb 3846  {csn 4575   cuni 4858  cima 5622  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494  df-vd1 44688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator