Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTVD Structured version   Visualization version   GIF version

Theorem csbfv12gALTVD 44897
Description: Virtual deduction proof of csbfv12 6955. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12 6955 is csbfv12gALTVD 44897 without virtual deductions and was automatically derived from csbfv12gALTVD 44897.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = { 𝑦}   )
3:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
4:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
5:4: (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
6:3,5: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
7:1: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
8:6,2: (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ { 𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
9:7,8: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})    )
10:9: (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
11:10: (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
12:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
13:11,12: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦 }}   )
14:13: (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 {𝐴 / 𝑥𝐵}) = {𝑦}}   )
15:1: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
16:14,15: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
17:: (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
18:17: 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}}
19:1,18: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
20:16,19: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
21:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
22:20,21: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:22: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTVD (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbfv12gALTVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44572 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴𝐶   )
2 sbceqg 4418 . . . . . . . . . . 11 (𝐴𝐶 → ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}))
31, 2e1a 44625 . . . . . . . . . 10 (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
4 csbima12 6099 . . . . . . . . . . . . . 14 𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})
54a1i 11 . . . . . . . . . . . . 13 (𝐴𝐶𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}))
61, 5e1a 44625 . . . . . . . . . . . 12 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
7 csbsng 4713 . . . . . . . . . . . . . 14 (𝐴𝐶𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
81, 7e1a 44625 . . . . . . . . . . . . 13 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
9 imaeq2 6076 . . . . . . . . . . . . 13 (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} → (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}))
108, 9e1a 44625 . . . . . . . . . . . 12 (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
11 eqeq1 2739 . . . . . . . . . . . . 13 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) → (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) ↔ (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})))
1211biimprd 248 . . . . . . . . . . . 12 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) → ((𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) → 𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})))
136, 10, 12e11 44686 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
14 csbconstg 3927 . . . . . . . . . . . 12 (𝐴𝐶𝐴 / 𝑥{𝑦} = {𝑦})
151, 14e1a 44625 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = {𝑦}   )
16 eqeq12 2752 . . . . . . . . . . . 12 ((𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) ∧ 𝐴 / 𝑥{𝑦} = {𝑦}) → (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}))
1716ex 412 . . . . . . . . . . 11 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) → (𝐴 / 𝑥{𝑦} = {𝑦} → (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
1813, 15, 17e11 44686 . . . . . . . . . 10 (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
19 bibi1 351 . . . . . . . . . . 11 (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}) → (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) ↔ (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
2019biimprd 248 . . . . . . . . . 10 (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}) → ((𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) → ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
213, 18, 20e11 44686 . . . . . . . . 9 (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
2221gen11 44614 . . . . . . . 8 (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
23 abbib 2809 . . . . . . . . 9 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} ↔ ∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}))
2423biimpri 228 . . . . . . . 8 (∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) → {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
2522, 24e1a 44625 . . . . . . 7 (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
26 csbab 4446 . . . . . . . . 9 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}
2726a1i 11 . . . . . . . 8 (𝐴𝐶𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}})
281, 27e1a 44625 . . . . . . 7 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
29 eqeq2 2747 . . . . . . . 8 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3029biimpd 229 . . . . . . 7 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3125, 28, 30e11 44686 . . . . . 6 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
32 unieq 4923 . . . . . 6 (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
3331, 32e1a 44625 . . . . 5 (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
34 csbuni 4941 . . . . . . 7 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
3534a1i 11 . . . . . 6 (𝐴𝐶𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}})
361, 35e1a 44625 . . . . 5 (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
37 eqeq2 2747 . . . . . 6 ( 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3837biimpd 229 . . . . 5 ( 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3933, 36, 38e11 44686 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
40 dffv4 6904 . . . . . 6 (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
4140ax-gen 1792 . . . . 5 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
42 csbeq2 3913 . . . . . 6 (∀𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}})
4342a1i 11 . . . . 5 (𝐴𝐶 → (∀𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}))
441, 41, 43e10 44692 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
45 eqeq2 2747 . . . . 5 (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
4645biimpd 229 . . . 4 (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
4739, 44, 46e11 44686 . . 3 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
48 dffv4 6904 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
49 eqeq2 2747 . . . 4 ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
5049biimprcd 250 . . 3 (𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
5147, 48, 50e10 44692 . 2 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
5251in1 44569 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  {cab 2712  [wsbc 3791  csb 3908  {csn 4631   cuni 4912  cima 5692  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fv 6571  df-vd1 44568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator