MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb2 Structured version   Visualization version   GIF version

Theorem csb2 3693
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3692 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbc5 3621 . . 3 ([𝐴 / 𝑥]𝑦𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑦𝐵))
32abbii 2882 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
41, 3eqtri 2787 1 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wex 1874  wcel 2155  {cab 2751  [wsbc 3596  csb 3691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-v 3352  df-sbc 3597  df-csb 3692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator