MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb2 Structured version   Visualization version   GIF version

Theorem csb2 3809
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3808 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbc5 3726 . . 3 ([𝐴 / 𝑥]𝑦𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑦𝐵))
32abbii 2823 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
41, 3eqtri 2781 1 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wex 1781  wcel 2111  {cab 2735  [wsbc 3698  csb 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-sbc 3699  df-csb 3808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator