Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem-ccly | Structured version Visualization version GIF version |
Description: Lemma for dath 37334. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Ref | Expression |
---|---|
dalem-ccly | ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . 2 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | simp2bi 1143 | 1 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5032 (class class class)co 7150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: dalemswapyzps 37288 dalemrotps 37289 dalem21 37292 dalem23 37294 dalem24 37295 dalem39 37309 dalem48 37318 |
Copyright terms: Public domain | W3C validator |