|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem-ccly | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39738. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) | 
| Ref | Expression | 
|---|---|
| da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | 
| Ref | Expression | 
|---|---|
| dalem-ccly | ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | da.ps0 | . 2 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | 1 | simp2bi 1147 | 1 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 (class class class)co 7431 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: dalemswapyzps 39692 dalemrotps 39693 dalem21 39696 dalem23 39698 dalem24 39699 dalem39 39713 dalem48 39722 | 
| Copyright terms: Public domain | W3C validator |