Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem24 Structured version   Visualization version   GIF version

Theorem dalem24 37334
Description: Lemma for dath 37373. Show that auxiliary atom 𝐺 is outside of plane 𝑌. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem24 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)

Proof of Theorem dalem24
StepHypRef Expression
1 dalem23.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
21oveq1i 7180 . . . 4 (𝐺 𝑌) = (((𝑐 𝑃) (𝑑 𝑆)) 𝑌)
3 dalem.ph . . . . . . . 8 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
43dalemkehl 37260 . . . . . . 7 (𝜑𝐾 ∈ HL)
5 hlol 36998 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
64, 5syl 17 . . . . . 6 (𝜑𝐾 ∈ OL)
763ad2ant1 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ OL)
843ad2ant1 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
9 dalem.ps . . . . . . . 8 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
109dalemccea 37320 . . . . . . 7 (𝜓𝑐𝐴)
11103ad2ant3 1136 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
123dalempea 37263 . . . . . . 7 (𝜑𝑃𝐴)
13123ad2ant1 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
14 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
15 dalem.j . . . . . . 7 = (join‘𝐾)
16 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
1714, 15, 16hlatjcl 37004 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
188, 11, 13, 17syl3anc 1372 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
199dalemddea 37321 . . . . . . 7 (𝜓𝑑𝐴)
20193ad2ant3 1136 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
213dalemsea 37266 . . . . . . 7 (𝜑𝑆𝐴)
22213ad2ant1 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2314, 15, 16hlatjcl 37004 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
248, 20, 22, 23syl3anc 1372 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
25 dalem23.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
263, 25dalemyeb 37286 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
27263ad2ant1 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
28 dalem23.m . . . . . 6 = (meet‘𝐾)
2914, 28latmmdir 36872 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (((𝑐 𝑃) (𝑑 𝑆)) 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
307, 18, 24, 27, 29syl13anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) (𝑑 𝑆)) 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
312, 30syl5eq 2785 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
3215, 16hlatjcom 37005 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) = (𝑃 𝑐))
338, 11, 13, 32syl3anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) = (𝑃 𝑐))
3433oveq1d 7185 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) 𝑌) = ((𝑃 𝑐) 𝑌))
35 dalem.l . . . . . . . 8 = (le‘𝐾)
36 dalem23.y . . . . . . . 8 𝑌 = ((𝑃 𝑄) 𝑅)
373, 35, 15, 16, 25, 36dalemply 37291 . . . . . . 7 (𝜑𝑃 𝑌)
38373ad2ant1 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 𝑌)
399dalem-ccly 37322 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
40393ad2ant3 1136 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
4114, 35, 15, 28, 162atjm 37082 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑐𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑃 𝑌 ∧ ¬ 𝑐 𝑌)) → ((𝑃 𝑐) 𝑌) = 𝑃)
428, 13, 11, 27, 38, 40, 41syl132anc 1389 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑐) 𝑌) = 𝑃)
4334, 42eqtrd 2773 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) 𝑌) = 𝑃)
4415, 16hlatjcom 37005 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) = (𝑆 𝑑))
458, 20, 22, 44syl3anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) = (𝑆 𝑑))
4645oveq1d 7185 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑 𝑆) 𝑌) = ((𝑆 𝑑) 𝑌))
47 dalem23.z . . . . . . . 8 𝑍 = ((𝑆 𝑇) 𝑈)
483, 35, 15, 16, 47dalemsly 37292 . . . . . . 7 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
49483adant3 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
509dalem-ddly 37323 . . . . . . 7 (𝜓 → ¬ 𝑑 𝑌)
51503ad2ant3 1136 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
5214, 35, 15, 28, 162atjm 37082 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑑𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 𝑌 ∧ ¬ 𝑑 𝑌)) → ((𝑆 𝑑) 𝑌) = 𝑆)
538, 22, 20, 27, 49, 51, 52syl132anc 1389 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑆 𝑑) 𝑌) = 𝑆)
5446, 53eqtrd 2773 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑 𝑆) 𝑌) = 𝑆)
5543, 54oveq12d 7188 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)) = (𝑃 𝑆))
563, 35, 15, 16, 25, 36dalempnes 37288 . . . . 5 (𝜑𝑃𝑆)
57 hlatl 36997 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
584, 57syl 17 . . . . . 6 (𝜑𝐾 ∈ AtLat)
59 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
6028, 59, 16atnem0 36955 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑆𝐴) → (𝑃𝑆 ↔ (𝑃 𝑆) = (0.‘𝐾)))
6158, 12, 21, 60syl3anc 1372 . . . . 5 (𝜑 → (𝑃𝑆 ↔ (𝑃 𝑆) = (0.‘𝐾)))
6256, 61mpbid 235 . . . 4 (𝜑 → (𝑃 𝑆) = (0.‘𝐾))
63623ad2ant1 1134 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) = (0.‘𝐾))
6431, 55, 633eqtrd 2777 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑌) = (0.‘𝐾))
65583ad2ant1 1134 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
663, 35, 15, 16, 9, 28, 25, 36, 47, 1dalem23 37333 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
6714, 35, 28, 59, 16atnle 36954 . . 3 ((𝐾 ∈ AtLat ∧ 𝐺𝐴𝑌 ∈ (Base‘𝐾)) → (¬ 𝐺 𝑌 ↔ (𝐺 𝑌) = (0.‘𝐾)))
6865, 66, 27, 67syl3anc 1372 . 2 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝐺 𝑌 ↔ (𝐺 𝑌) = (0.‘𝐾)))
6964, 68mpbird 260 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  (class class class)co 7170  Basecbs 16586  lecple 16675  joincjn 17670  meetcmee 17671  0.cp0 17763  OLcol 36811  Atomscatm 36900  AtLatcal 36901  HLchlt 36987  LPlanesclpl 37129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-lat 17772  df-clat 17834  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136
This theorem is referenced by:  dalem27  37336  dalem30  37339  dalem54  37363
  Copyright terms: Public domain W3C validator