Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem24 Structured version   Visualization version   GIF version

Theorem dalem24 37711
Description: Lemma for dath 37750. Show that auxiliary atom 𝐺 is outside of plane 𝑌. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem24 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)

Proof of Theorem dalem24
StepHypRef Expression
1 dalem23.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
21oveq1i 7285 . . . 4 (𝐺 𝑌) = (((𝑐 𝑃) (𝑑 𝑆)) 𝑌)
3 dalem.ph . . . . . . . 8 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
43dalemkehl 37637 . . . . . . 7 (𝜑𝐾 ∈ HL)
5 hlol 37375 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
64, 5syl 17 . . . . . 6 (𝜑𝐾 ∈ OL)
763ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ OL)
843ad2ant1 1132 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
9 dalem.ps . . . . . . . 8 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
109dalemccea 37697 . . . . . . 7 (𝜓𝑐𝐴)
11103ad2ant3 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
123dalempea 37640 . . . . . . 7 (𝜑𝑃𝐴)
13123ad2ant1 1132 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
14 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
15 dalem.j . . . . . . 7 = (join‘𝐾)
16 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
1714, 15, 16hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
188, 11, 13, 17syl3anc 1370 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
199dalemddea 37698 . . . . . . 7 (𝜓𝑑𝐴)
20193ad2ant3 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
213dalemsea 37643 . . . . . . 7 (𝜑𝑆𝐴)
22213ad2ant1 1132 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2314, 15, 16hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
248, 20, 22, 23syl3anc 1370 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
25 dalem23.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
263, 25dalemyeb 37663 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
27263ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
28 dalem23.m . . . . . 6 = (meet‘𝐾)
2914, 28latmmdir 37249 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (((𝑐 𝑃) (𝑑 𝑆)) 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
307, 18, 24, 27, 29syl13anc 1371 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) (𝑑 𝑆)) 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
312, 30eqtrid 2790 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
3215, 16hlatjcom 37382 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) = (𝑃 𝑐))
338, 11, 13, 32syl3anc 1370 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) = (𝑃 𝑐))
3433oveq1d 7290 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) 𝑌) = ((𝑃 𝑐) 𝑌))
35 dalem.l . . . . . . . 8 = (le‘𝐾)
36 dalem23.y . . . . . . . 8 𝑌 = ((𝑃 𝑄) 𝑅)
373, 35, 15, 16, 25, 36dalemply 37668 . . . . . . 7 (𝜑𝑃 𝑌)
38373ad2ant1 1132 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 𝑌)
399dalem-ccly 37699 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
40393ad2ant3 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
4114, 35, 15, 28, 162atjm 37459 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑐𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑃 𝑌 ∧ ¬ 𝑐 𝑌)) → ((𝑃 𝑐) 𝑌) = 𝑃)
428, 13, 11, 27, 38, 40, 41syl132anc 1387 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑐) 𝑌) = 𝑃)
4334, 42eqtrd 2778 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) 𝑌) = 𝑃)
4415, 16hlatjcom 37382 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) = (𝑆 𝑑))
458, 20, 22, 44syl3anc 1370 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) = (𝑆 𝑑))
4645oveq1d 7290 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑 𝑆) 𝑌) = ((𝑆 𝑑) 𝑌))
47 dalem23.z . . . . . . . 8 𝑍 = ((𝑆 𝑇) 𝑈)
483, 35, 15, 16, 47dalemsly 37669 . . . . . . 7 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
49483adant3 1131 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
509dalem-ddly 37700 . . . . . . 7 (𝜓 → ¬ 𝑑 𝑌)
51503ad2ant3 1134 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
5214, 35, 15, 28, 162atjm 37459 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑑𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 𝑌 ∧ ¬ 𝑑 𝑌)) → ((𝑆 𝑑) 𝑌) = 𝑆)
538, 22, 20, 27, 49, 51, 52syl132anc 1387 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑆 𝑑) 𝑌) = 𝑆)
5446, 53eqtrd 2778 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑 𝑆) 𝑌) = 𝑆)
5543, 54oveq12d 7293 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)) = (𝑃 𝑆))
563, 35, 15, 16, 25, 36dalempnes 37665 . . . . 5 (𝜑𝑃𝑆)
57 hlatl 37374 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
584, 57syl 17 . . . . . 6 (𝜑𝐾 ∈ AtLat)
59 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
6028, 59, 16atnem0 37332 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑆𝐴) → (𝑃𝑆 ↔ (𝑃 𝑆) = (0.‘𝐾)))
6158, 12, 21, 60syl3anc 1370 . . . . 5 (𝜑 → (𝑃𝑆 ↔ (𝑃 𝑆) = (0.‘𝐾)))
6256, 61mpbid 231 . . . 4 (𝜑 → (𝑃 𝑆) = (0.‘𝐾))
63623ad2ant1 1132 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) = (0.‘𝐾))
6431, 55, 633eqtrd 2782 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑌) = (0.‘𝐾))
65583ad2ant1 1132 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
663, 35, 15, 16, 9, 28, 25, 36, 47, 1dalem23 37710 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
6714, 35, 28, 59, 16atnle 37331 . . 3 ((𝐾 ∈ AtLat ∧ 𝐺𝐴𝑌 ∈ (Base‘𝐾)) → (¬ 𝐺 𝑌 ↔ (𝐺 𝑌) = (0.‘𝐾)))
6865, 66, 27, 67syl3anc 1370 . 2 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝐺 𝑌 ↔ (𝐺 𝑌) = (0.‘𝐾)))
6964, 68mpbird 256 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  0.cp0 18141  OLcol 37188  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  dalem27  37713  dalem30  37716  dalem54  37740
  Copyright terms: Public domain W3C validator