Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem24 Structured version   Visualization version   GIF version

Theorem dalem24 35771
Description: Lemma for dath 35810. Show that auxiliary atom 𝐺 is outside of plane 𝑌. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem24 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)

Proof of Theorem dalem24
StepHypRef Expression
1 dalem23.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
21oveq1i 6920 . . . 4 (𝐺 𝑌) = (((𝑐 𝑃) (𝑑 𝑆)) 𝑌)
3 dalem.ph . . . . . . . 8 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
43dalemkehl 35697 . . . . . . 7 (𝜑𝐾 ∈ HL)
5 hlol 35435 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
64, 5syl 17 . . . . . 6 (𝜑𝐾 ∈ OL)
763ad2ant1 1167 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ OL)
843ad2ant1 1167 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
9 dalem.ps . . . . . . . 8 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
109dalemccea 35757 . . . . . . 7 (𝜓𝑐𝐴)
11103ad2ant3 1169 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
123dalempea 35700 . . . . . . 7 (𝜑𝑃𝐴)
13123ad2ant1 1167 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
14 eqid 2825 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
15 dalem.j . . . . . . 7 = (join‘𝐾)
16 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
1714, 15, 16hlatjcl 35441 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
188, 11, 13, 17syl3anc 1494 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
199dalemddea 35758 . . . . . . 7 (𝜓𝑑𝐴)
20193ad2ant3 1169 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
213dalemsea 35703 . . . . . . 7 (𝜑𝑆𝐴)
22213ad2ant1 1167 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2314, 15, 16hlatjcl 35441 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
248, 20, 22, 23syl3anc 1494 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
25 dalem23.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
263, 25dalemyeb 35723 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐾))
27263ad2ant1 1167 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
28 dalem23.m . . . . . 6 = (meet‘𝐾)
2914, 28latmmdir 35309 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (((𝑐 𝑃) (𝑑 𝑆)) 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
307, 18, 24, 27, 29syl13anc 1495 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) (𝑑 𝑆)) 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
312, 30syl5eq 2873 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑌) = (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)))
3215, 16hlatjcom 35442 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) = (𝑃 𝑐))
338, 11, 13, 32syl3anc 1494 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) = (𝑃 𝑐))
3433oveq1d 6925 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) 𝑌) = ((𝑃 𝑐) 𝑌))
35 dalem.l . . . . . . . 8 = (le‘𝐾)
36 dalem23.y . . . . . . . 8 𝑌 = ((𝑃 𝑄) 𝑅)
373, 35, 15, 16, 25, 36dalemply 35728 . . . . . . 7 (𝜑𝑃 𝑌)
38373ad2ant1 1167 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 𝑌)
399dalem-ccly 35759 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
40393ad2ant3 1169 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
4114, 35, 15, 28, 162atjm 35519 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑐𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑃 𝑌 ∧ ¬ 𝑐 𝑌)) → ((𝑃 𝑐) 𝑌) = 𝑃)
428, 13, 11, 27, 38, 40, 41syl132anc 1511 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑐) 𝑌) = 𝑃)
4334, 42eqtrd 2861 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) 𝑌) = 𝑃)
4415, 16hlatjcom 35442 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) = (𝑆 𝑑))
458, 20, 22, 44syl3anc 1494 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) = (𝑆 𝑑))
4645oveq1d 6925 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑 𝑆) 𝑌) = ((𝑆 𝑑) 𝑌))
47 dalem23.z . . . . . . . 8 𝑍 = ((𝑆 𝑇) 𝑈)
483, 35, 15, 16, 47dalemsly 35729 . . . . . . 7 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
49483adant3 1166 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
509dalem-ddly 35760 . . . . . . 7 (𝜓 → ¬ 𝑑 𝑌)
51503ad2ant3 1169 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
5214, 35, 15, 28, 162atjm 35519 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑑𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 𝑌 ∧ ¬ 𝑑 𝑌)) → ((𝑆 𝑑) 𝑌) = 𝑆)
538, 22, 20, 27, 49, 51, 52syl132anc 1511 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑆 𝑑) 𝑌) = 𝑆)
5446, 53eqtrd 2861 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑 𝑆) 𝑌) = 𝑆)
5543, 54oveq12d 6928 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) 𝑌) ((𝑑 𝑆) 𝑌)) = (𝑃 𝑆))
563, 35, 15, 16, 25, 36dalempnes 35725 . . . . 5 (𝜑𝑃𝑆)
57 hlatl 35434 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
584, 57syl 17 . . . . . 6 (𝜑𝐾 ∈ AtLat)
59 eqid 2825 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
6028, 59, 16atnem0 35392 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑆𝐴) → (𝑃𝑆 ↔ (𝑃 𝑆) = (0.‘𝐾)))
6158, 12, 21, 60syl3anc 1494 . . . . 5 (𝜑 → (𝑃𝑆 ↔ (𝑃 𝑆) = (0.‘𝐾)))
6256, 61mpbid 224 . . . 4 (𝜑 → (𝑃 𝑆) = (0.‘𝐾))
63623ad2ant1 1167 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) = (0.‘𝐾))
6431, 55, 633eqtrd 2865 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑌) = (0.‘𝐾))
65583ad2ant1 1167 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
663, 35, 15, 16, 9, 28, 25, 36, 47, 1dalem23 35770 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
6714, 35, 28, 59, 16atnle 35391 . . 3 ((𝐾 ∈ AtLat ∧ 𝐺𝐴𝑌 ∈ (Base‘𝐾)) → (¬ 𝐺 𝑌 ↔ (𝐺 𝑌) = (0.‘𝐾)))
6865, 66, 27, 67syl3anc 1494 . 2 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝐺 𝑌 ↔ (𝐺 𝑌) = (0.‘𝐾)))
6964, 68mpbird 249 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4875  cfv 6127  (class class class)co 6910  Basecbs 16229  lecple 16319  joincjn 17304  meetcmee 17305  0.cp0 17397  OLcol 35248  Atomscatm 35337  AtLatcal 35338  HLchlt 35424  LPlanesclpl 35566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-lat 17406  df-clat 17468  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-llines 35572  df-lplanes 35573
This theorem is referenced by:  dalem27  35773  dalem30  35776  dalem54  35800
  Copyright terms: Public domain W3C validator