Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem23 Structured version   Visualization version   GIF version

Theorem dalem23 37972
Description: Lemma for dath 38012. Show that auxiliary atom 𝐺 is an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem23 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)

Proof of Theorem dalem23
StepHypRef Expression
1 dalem23.g . 2 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
2 dalem.ph . . . . . . . 8 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
32dalemkehl 37899 . . . . . . 7 (𝜑𝐾 ∈ HL)
43adantr 481 . . . . . 6 ((𝜑𝜓) → 𝐾 ∈ HL)
5 dalem.ps . . . . . . . 8 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
65dalemccea 37959 . . . . . . 7 (𝜓𝑐𝐴)
76adantl 482 . . . . . 6 ((𝜑𝜓) → 𝑐𝐴)
82dalempea 37902 . . . . . . 7 (𝜑𝑃𝐴)
98adantr 481 . . . . . 6 ((𝜑𝜓) → 𝑃𝐴)
105dalemddea 37960 . . . . . . 7 (𝜓𝑑𝐴)
1110adantl 482 . . . . . 6 ((𝜑𝜓) → 𝑑𝐴)
122dalemsea 37905 . . . . . . 7 (𝜑𝑆𝐴)
1312adantr 481 . . . . . 6 ((𝜑𝜓) → 𝑆𝐴)
14 dalem.j . . . . . . 7 = (join‘𝐾)
15 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
1614, 15hlatj4 37649 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑐𝐴𝑃𝐴) ∧ (𝑑𝐴𝑆𝐴)) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
174, 7, 9, 11, 13, 16syl122anc 1378 . . . . 5 ((𝜑𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
18173adant2 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
19 dalem.l . . . . 5 = (le‘𝐾)
20 dalem23.o . . . . 5 𝑂 = (LPlanes‘𝐾)
21 dalem23.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
22 dalem23.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
232, 19, 14, 15, 5, 20, 21, 22dalem22 37971 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝑂)
2418, 23eqeltrd 2837 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂)
2533ad2ant1 1132 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
262, 19, 14, 15, 20, 21dalemply 37930 . . . . . . . 8 (𝜑𝑃 𝑌)
275dalem-ccly 37961 . . . . . . . 8 (𝜓 → ¬ 𝑐 𝑌)
28 nbrne2 5112 . . . . . . . 8 ((𝑃 𝑌 ∧ ¬ 𝑐 𝑌) → 𝑃𝑐)
2926, 27, 28syl2an 596 . . . . . . 7 ((𝜑𝜓) → 𝑃𝑐)
3029necomd 2996 . . . . . 6 ((𝜑𝜓) → 𝑐𝑃)
31 eqid 2736 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3214, 15, 31llni2 37788 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) ∧ 𝑐𝑃) → (𝑐 𝑃) ∈ (LLines‘𝐾))
334, 7, 9, 30, 32syl31anc 1372 . . . . 5 ((𝜑𝜓) → (𝑐 𝑃) ∈ (LLines‘𝐾))
34333adant2 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (LLines‘𝐾))
35103ad2ant3 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
36123ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
372, 19, 14, 15, 22dalemsly 37931 . . . . . . . 8 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
38373adant3 1131 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
395dalem-ddly 37962 . . . . . . . 8 (𝜓 → ¬ 𝑑 𝑌)
40393ad2ant3 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
41 nbrne2 5112 . . . . . . 7 ((𝑆 𝑌 ∧ ¬ 𝑑 𝑌) → 𝑆𝑑)
4238, 40, 41syl2anc 584 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝑑)
4342necomd 2996 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝑆)
4414, 15, 31llni2 37788 . . . . 5 (((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) ∧ 𝑑𝑆) → (𝑑 𝑆) ∈ (LLines‘𝐾))
4525, 35, 36, 43, 44syl31anc 1372 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (LLines‘𝐾))
46 dalem23.m . . . . 5 = (meet‘𝐾)
4714, 46, 15, 31, 202llnmj 37836 . . . 4 ((𝐾 ∈ HL ∧ (𝑐 𝑃) ∈ (LLines‘𝐾) ∧ (𝑑 𝑆) ∈ (LLines‘𝐾)) → (((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴 ↔ ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂))
4825, 34, 45, 47syl3anc 1370 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴 ↔ ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂))
4924, 48mpbird 256 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴)
501, 49eqeltrid 2841 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  cfv 6479  (class class class)co 7337  Basecbs 17009  lecple 17066  joincjn 18126  meetcmee 18127  Atomscatm 37538  HLchlt 37625  LLinesclln 37767  LPlanesclpl 37768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-p0 18240  df-lat 18247  df-clat 18314  df-oposet 37451  df-ol 37453  df-oml 37454  df-covers 37541  df-ats 37542  df-atl 37573  df-cvlat 37597  df-hlat 37626  df-llines 37774  df-lplanes 37775
This theorem is referenced by:  dalem24  37973  dalem27  37975  dalem28  37976  dalem29  37977  dalem38  37986  dalem39  37987  dalem41  37989  dalem42  37990  dalem43  37991  dalem44  37992  dalem45  37993  dalem51  37999  dalem52  38000  dalem54  38002  dalem55  38003  dalem57  38005  dalem58  38006  dalem59  38007
  Copyright terms: Public domain W3C validator