Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem23 Structured version   Visualization version   GIF version

Theorem dalem23 37447
Description: Lemma for dath 37487. Show that auxiliary atom 𝐺 is an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem23 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)

Proof of Theorem dalem23
StepHypRef Expression
1 dalem23.g . 2 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
2 dalem.ph . . . . . . . 8 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
32dalemkehl 37374 . . . . . . 7 (𝜑𝐾 ∈ HL)
43adantr 484 . . . . . 6 ((𝜑𝜓) → 𝐾 ∈ HL)
5 dalem.ps . . . . . . . 8 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
65dalemccea 37434 . . . . . . 7 (𝜓𝑐𝐴)
76adantl 485 . . . . . 6 ((𝜑𝜓) → 𝑐𝐴)
82dalempea 37377 . . . . . . 7 (𝜑𝑃𝐴)
98adantr 484 . . . . . 6 ((𝜑𝜓) → 𝑃𝐴)
105dalemddea 37435 . . . . . . 7 (𝜓𝑑𝐴)
1110adantl 485 . . . . . 6 ((𝜑𝜓) → 𝑑𝐴)
122dalemsea 37380 . . . . . . 7 (𝜑𝑆𝐴)
1312adantr 484 . . . . . 6 ((𝜑𝜓) → 𝑆𝐴)
14 dalem.j . . . . . . 7 = (join‘𝐾)
15 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
1614, 15hlatj4 37125 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑐𝐴𝑃𝐴) ∧ (𝑑𝐴𝑆𝐴)) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
174, 7, 9, 11, 13, 16syl122anc 1381 . . . . 5 ((𝜑𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
18173adant2 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
19 dalem.l . . . . 5 = (le‘𝐾)
20 dalem23.o . . . . 5 𝑂 = (LPlanes‘𝐾)
21 dalem23.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
22 dalem23.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
232, 19, 14, 15, 5, 20, 21, 22dalem22 37446 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝑂)
2418, 23eqeltrd 2838 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂)
2533ad2ant1 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
262, 19, 14, 15, 20, 21dalemply 37405 . . . . . . . 8 (𝜑𝑃 𝑌)
275dalem-ccly 37436 . . . . . . . 8 (𝜓 → ¬ 𝑐 𝑌)
28 nbrne2 5073 . . . . . . . 8 ((𝑃 𝑌 ∧ ¬ 𝑐 𝑌) → 𝑃𝑐)
2926, 27, 28syl2an 599 . . . . . . 7 ((𝜑𝜓) → 𝑃𝑐)
3029necomd 2996 . . . . . 6 ((𝜑𝜓) → 𝑐𝑃)
31 eqid 2737 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3214, 15, 31llni2 37263 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) ∧ 𝑐𝑃) → (𝑐 𝑃) ∈ (LLines‘𝐾))
334, 7, 9, 30, 32syl31anc 1375 . . . . 5 ((𝜑𝜓) → (𝑐 𝑃) ∈ (LLines‘𝐾))
34333adant2 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (LLines‘𝐾))
35103ad2ant3 1137 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
36123ad2ant1 1135 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
372, 19, 14, 15, 22dalemsly 37406 . . . . . . . 8 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
38373adant3 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
395dalem-ddly 37437 . . . . . . . 8 (𝜓 → ¬ 𝑑 𝑌)
40393ad2ant3 1137 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
41 nbrne2 5073 . . . . . . 7 ((𝑆 𝑌 ∧ ¬ 𝑑 𝑌) → 𝑆𝑑)
4238, 40, 41syl2anc 587 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝑑)
4342necomd 2996 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝑆)
4414, 15, 31llni2 37263 . . . . 5 (((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) ∧ 𝑑𝑆) → (𝑑 𝑆) ∈ (LLines‘𝐾))
4525, 35, 36, 43, 44syl31anc 1375 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (LLines‘𝐾))
46 dalem23.m . . . . 5 = (meet‘𝐾)
4714, 46, 15, 31, 202llnmj 37311 . . . 4 ((𝐾 ∈ HL ∧ (𝑐 𝑃) ∈ (LLines‘𝐾) ∧ (𝑑 𝑆) ∈ (LLines‘𝐾)) → (((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴 ↔ ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂))
4825, 34, 45, 47syl3anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴 ↔ ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂))
4924, 48mpbird 260 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴)
501, 49eqeltrid 2842 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  meetcmee 17819  Atomscatm 37014  HLchlt 37101  LLinesclln 37242  LPlanesclpl 37243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250
This theorem is referenced by:  dalem24  37448  dalem27  37450  dalem28  37451  dalem29  37452  dalem38  37461  dalem39  37462  dalem41  37464  dalem42  37465  dalem43  37466  dalem44  37467  dalem45  37468  dalem51  37474  dalem52  37475  dalem54  37477  dalem55  37478  dalem57  37480  dalem58  37481  dalem59  37482
  Copyright terms: Public domain W3C validator