Step | Hyp | Ref
| Expression |
1 | | dalem23.g |
. 2
β’ πΊ = ((π β¨ π) β§ (π β¨ π)) |
2 | | dalem.ph |
. . . . . . . 8
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π
) β§ Β¬ πΆ β€ (π
β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π
β¨ π))))) |
3 | 2 | dalemkehl 38494 |
. . . . . . 7
β’ (π β πΎ β HL) |
4 | 3 | adantr 482 |
. . . . . 6
β’ ((π β§ π) β πΎ β HL) |
5 | | dalem.ps |
. . . . . . . 8
β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
6 | 5 | dalemccea 38554 |
. . . . . . 7
β’ (π β π β π΄) |
7 | 6 | adantl 483 |
. . . . . 6
β’ ((π β§ π) β π β π΄) |
8 | 2 | dalempea 38497 |
. . . . . . 7
β’ (π β π β π΄) |
9 | 8 | adantr 482 |
. . . . . 6
β’ ((π β§ π) β π β π΄) |
10 | 5 | dalemddea 38555 |
. . . . . . 7
β’ (π β π β π΄) |
11 | 10 | adantl 483 |
. . . . . 6
β’ ((π β§ π) β π β π΄) |
12 | 2 | dalemsea 38500 |
. . . . . . 7
β’ (π β π β π΄) |
13 | 12 | adantr 482 |
. . . . . 6
β’ ((π β§ π) β π β π΄) |
14 | | dalem.j |
. . . . . . 7
β’ β¨ =
(joinβπΎ) |
15 | | dalem.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
16 | 14, 15 | hlatj4 38244 |
. . . . . 6
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
17 | 4, 7, 9, 11, 13, 16 | syl122anc 1380 |
. . . . 5
β’ ((π β§ π) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
18 | 17 | 3adant2 1132 |
. . . 4
β’ ((π β§ π = π β§ π) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) |
19 | | dalem.l |
. . . . 5
β’ β€ =
(leβπΎ) |
20 | | dalem23.o |
. . . . 5
β’ π = (LPlanesβπΎ) |
21 | | dalem23.y |
. . . . 5
β’ π = ((π β¨ π) β¨ π
) |
22 | | dalem23.z |
. . . . 5
β’ π = ((π β¨ π) β¨ π) |
23 | 2, 19, 14, 15, 5, 20, 21, 22 | dalem22 38566 |
. . . 4
β’ ((π β§ π = π β§ π) β ((π β¨ π) β¨ (π β¨ π)) β π) |
24 | 18, 23 | eqeltrd 2834 |
. . 3
β’ ((π β§ π = π β§ π) β ((π β¨ π) β¨ (π β¨ π)) β π) |
25 | 3 | 3ad2ant1 1134 |
. . . 4
β’ ((π β§ π = π β§ π) β πΎ β HL) |
26 | 2, 19, 14, 15, 20, 21 | dalemply 38525 |
. . . . . . . 8
β’ (π β π β€ π) |
27 | 5 | dalem-ccly 38556 |
. . . . . . . 8
β’ (π β Β¬ π β€ π) |
28 | | nbrne2 5169 |
. . . . . . . 8
β’ ((π β€ π β§ Β¬ π β€ π) β π β π) |
29 | 26, 27, 28 | syl2an 597 |
. . . . . . 7
β’ ((π β§ π) β π β π) |
30 | 29 | necomd 2997 |
. . . . . 6
β’ ((π β§ π) β π β π) |
31 | | eqid 2733 |
. . . . . . 7
β’
(LLinesβπΎ) =
(LLinesβπΎ) |
32 | 14, 15, 31 | llni2 38383 |
. . . . . 6
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β (LLinesβπΎ)) |
33 | 4, 7, 9, 30, 32 | syl31anc 1374 |
. . . . 5
β’ ((π β§ π) β (π β¨ π) β (LLinesβπΎ)) |
34 | 33 | 3adant2 1132 |
. . . 4
β’ ((π β§ π = π β§ π) β (π β¨ π) β (LLinesβπΎ)) |
35 | 10 | 3ad2ant3 1136 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π΄) |
36 | 12 | 3ad2ant1 1134 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π΄) |
37 | 2, 19, 14, 15, 22 | dalemsly 38526 |
. . . . . . . 8
β’ ((π β§ π = π) β π β€ π) |
38 | 37 | 3adant3 1133 |
. . . . . . 7
β’ ((π β§ π = π β§ π) β π β€ π) |
39 | 5 | dalem-ddly 38557 |
. . . . . . . 8
β’ (π β Β¬ π β€ π) |
40 | 39 | 3ad2ant3 1136 |
. . . . . . 7
β’ ((π β§ π = π β§ π) β Β¬ π β€ π) |
41 | | nbrne2 5169 |
. . . . . . 7
β’ ((π β€ π β§ Β¬ π β€ π) β π β π) |
42 | 38, 40, 41 | syl2anc 585 |
. . . . . 6
β’ ((π β§ π = π β§ π) β π β π) |
43 | 42 | necomd 2997 |
. . . . 5
β’ ((π β§ π = π β§ π) β π β π) |
44 | 14, 15, 31 | llni2 38383 |
. . . . 5
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β (LLinesβπΎ)) |
45 | 25, 35, 36, 43, 44 | syl31anc 1374 |
. . . 4
β’ ((π β§ π = π β§ π) β (π β¨ π) β (LLinesβπΎ)) |
46 | | dalem23.m |
. . . . 5
β’ β§ =
(meetβπΎ) |
47 | 14, 46, 15, 31, 20 | 2llnmj 38431 |
. . . 4
β’ ((πΎ β HL β§ (π β¨ π) β (LLinesβπΎ) β§ (π β¨ π) β (LLinesβπΎ)) β (((π β¨ π) β§ (π β¨ π)) β π΄ β ((π β¨ π) β¨ (π β¨ π)) β π)) |
48 | 25, 34, 45, 47 | syl3anc 1372 |
. . 3
β’ ((π β§ π = π β§ π) β (((π β¨ π) β§ (π β¨ π)) β π΄ β ((π β¨ π) β¨ (π β¨ π)) β π)) |
49 | 24, 48 | mpbird 257 |
. 2
β’ ((π β§ π = π β§ π) β ((π β¨ π) β§ (π β¨ π)) β π΄) |
50 | 1, 49 | eqeltrid 2838 |
1
β’ ((π β§ π = π β§ π) β πΊ β π΄) |