Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem23 Structured version   Visualization version   GIF version

Theorem dalem23 39743
Description: Lemma for dath 39783. Show that auxiliary atom 𝐺 is an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem23 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)

Proof of Theorem dalem23
StepHypRef Expression
1 dalem23.g . 2 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
2 dalem.ph . . . . . . . 8 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
32dalemkehl 39670 . . . . . . 7 (𝜑𝐾 ∈ HL)
43adantr 480 . . . . . 6 ((𝜑𝜓) → 𝐾 ∈ HL)
5 dalem.ps . . . . . . . 8 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
65dalemccea 39730 . . . . . . 7 (𝜓𝑐𝐴)
76adantl 481 . . . . . 6 ((𝜑𝜓) → 𝑐𝐴)
82dalempea 39673 . . . . . . 7 (𝜑𝑃𝐴)
98adantr 480 . . . . . 6 ((𝜑𝜓) → 𝑃𝐴)
105dalemddea 39731 . . . . . . 7 (𝜓𝑑𝐴)
1110adantl 481 . . . . . 6 ((𝜑𝜓) → 𝑑𝐴)
122dalemsea 39676 . . . . . . 7 (𝜑𝑆𝐴)
1312adantr 480 . . . . . 6 ((𝜑𝜓) → 𝑆𝐴)
14 dalem.j . . . . . . 7 = (join‘𝐾)
15 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
1614, 15hlatj4 39421 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑐𝐴𝑃𝐴) ∧ (𝑑𝐴𝑆𝐴)) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
174, 7, 9, 11, 13, 16syl122anc 1381 . . . . 5 ((𝜑𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
18173adant2 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑐 𝑑) (𝑃 𝑆)))
19 dalem.l . . . . 5 = (le‘𝐾)
20 dalem23.o . . . . 5 𝑂 = (LPlanes‘𝐾)
21 dalem23.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
22 dalem23.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
232, 19, 14, 15, 5, 20, 21, 22dalem22 39742 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝑂)
2418, 23eqeltrd 2831 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂)
2533ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
262, 19, 14, 15, 20, 21dalemply 39701 . . . . . . . 8 (𝜑𝑃 𝑌)
275dalem-ccly 39732 . . . . . . . 8 (𝜓 → ¬ 𝑐 𝑌)
28 nbrne2 5109 . . . . . . . 8 ((𝑃 𝑌 ∧ ¬ 𝑐 𝑌) → 𝑃𝑐)
2926, 27, 28syl2an 596 . . . . . . 7 ((𝜑𝜓) → 𝑃𝑐)
3029necomd 2983 . . . . . 6 ((𝜑𝜓) → 𝑐𝑃)
31 eqid 2731 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
3214, 15, 31llni2 39559 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) ∧ 𝑐𝑃) → (𝑐 𝑃) ∈ (LLines‘𝐾))
334, 7, 9, 30, 32syl31anc 1375 . . . . 5 ((𝜑𝜓) → (𝑐 𝑃) ∈ (LLines‘𝐾))
34333adant2 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (LLines‘𝐾))
35103ad2ant3 1135 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
36123ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
372, 19, 14, 15, 22dalemsly 39702 . . . . . . . 8 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
38373adant3 1132 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
395dalem-ddly 39733 . . . . . . . 8 (𝜓 → ¬ 𝑑 𝑌)
40393ad2ant3 1135 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
41 nbrne2 5109 . . . . . . 7 ((𝑆 𝑌 ∧ ¬ 𝑑 𝑌) → 𝑆𝑑)
4238, 40, 41syl2anc 584 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝑑)
4342necomd 2983 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝑆)
4414, 15, 31llni2 39559 . . . . 5 (((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) ∧ 𝑑𝑆) → (𝑑 𝑆) ∈ (LLines‘𝐾))
4525, 35, 36, 43, 44syl31anc 1375 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (LLines‘𝐾))
46 dalem23.m . . . . 5 = (meet‘𝐾)
4714, 46, 15, 31, 202llnmj 39607 . . . 4 ((𝐾 ∈ HL ∧ (𝑐 𝑃) ∈ (LLines‘𝐾) ∧ (𝑑 𝑆) ∈ (LLines‘𝐾)) → (((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴 ↔ ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂))
4825, 34, 45, 47syl3anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴 ↔ ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝑂))
4924, 48mpbird 257 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) ∈ 𝐴)
501, 49eqeltrid 2835 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39310  HLchlt 39397  LLinesclln 39538  LPlanesclpl 39539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-llines 39545  df-lplanes 39546
This theorem is referenced by:  dalem24  39744  dalem27  39746  dalem28  39747  dalem29  39748  dalem38  39757  dalem39  39758  dalem41  39760  dalem42  39761  dalem43  39762  dalem44  39763  dalem45  39764  dalem51  39770  dalem52  39771  dalem54  39773  dalem55  39774  dalem57  39776  dalem58  39777  dalem59  39778
  Copyright terms: Public domain W3C validator