Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-brsiga Structured version   Visualization version   GIF version

Definition df-brsiga 32199
Description: A Borel Algebra is defined as a sigma-algebra generated by a topology. 'The' Borel sigma-algebra here refers to the sigma-algebra generated by the topology of open intervals on real numbers. The Borel algebra of a given topology 𝐽 is the sigma-algebra generated by 𝐽, (sigaGen‘𝐽), so there is no need to introduce a special constant function for Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
df-brsiga 𝔅 = (sigaGen‘(topGen‘ran (,)))

Detailed syntax breakdown of Definition df-brsiga
StepHypRef Expression
1 cbrsiga 32198 . 2 class 𝔅
2 cioo 13129 . . . . 5 class (,)
32crn 5601 . . . 4 class ran (,)
4 ctg 17197 . . . 4 class topGen
53, 4cfv 6458 . . 3 class (topGen‘ran (,))
6 csigagen 32155 . . 3 class sigaGen
75, 6cfv 6458 . 2 class (sigaGen‘(topGen‘ran (,)))
81, 7wceq 1539 1 wff 𝔅 = (sigaGen‘(topGen‘ran (,)))
Colors of variables: wff setvar class
This definition is referenced by:  brsiga  32200  brsigarn  32201  unibrsiga  32203  elmbfmvol2  32283  dya2iocbrsiga  32291  dya2icobrsiga  32292  sxbrsiga  32306  rrvadd  32468  rrvmulc  32469  orrvcval4  32480  orrvcoel  32481  orrvccel  32482
  Copyright terms: Public domain W3C validator