| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvccel | Structured version Visualization version GIF version | ||
| Description: If the relation produces closed sets, preimage maps are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| orrvccel.5 | ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
| Ref | Expression |
|---|---|
| orrvccel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrvccel.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | domprobsiga 34409 | . . 3 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 4 | retop 24656 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
| 6 | orrvccel.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 7 | 1 | rrvmbfm 34440 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 8 | 6, 7 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 9 | df-brsiga 34179 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 10 | 9 | oveq2i 7401 | . . 3 ⊢ (dom 𝑃MblFnM𝔅ℝ) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))) |
| 11 | 8, 10 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))) |
| 12 | orrvccel.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 13 | uniretop 24657 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 14 | rabeq 3423 | . . . 4 ⊢ (ℝ = ∪ (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) | |
| 15 | 13, 14 | ax-mp 5 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} |
| 16 | orrvccel.5 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) | |
| 17 | 15, 16 | eqeltrrid 2834 | . 2 ⊢ (𝜑 → {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
| 18 | 3, 5, 11, 12, 17 | orvccel 34461 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 (,)cioo 13313 topGenctg 17407 Topctop 22787 Clsdccld 22910 sigAlgebracsiga 34105 sigaGencsigagen 34135 𝔅ℝcbrsiga 34178 MblFnMcmbfm 34246 Probcprb 34405 rRndVarcrrv 34438 ∘RV/𝑐corvc 34454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 df-topgen 17413 df-top 22788 df-bases 22840 df-cld 22913 df-esum 34025 df-siga 34106 df-sigagen 34136 df-brsiga 34179 df-meas 34193 df-mbfm 34247 df-prob 34406 df-rrv 34439 df-orvc 34455 |
| This theorem is referenced by: orvcgteel 34466 orvclteel 34471 |
| Copyright terms: Public domain | W3C validator |