Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvccel | Structured version Visualization version GIF version |
Description: If the relation produces closed sets, preimage maps are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
orrvccel.5 | ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
Ref | Expression |
---|---|
orrvccel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | domprobsiga 31948 | . . 3 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
4 | retop 23514 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
6 | orrvccel.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
7 | 1 | rrvmbfm 31979 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
8 | 6, 7 | mpbid 235 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
9 | df-brsiga 31720 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
10 | 9 | oveq2i 7181 | . . 3 ⊢ (dom 𝑃MblFnM𝔅ℝ) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))) |
11 | 8, 10 | eleqtrdi 2843 | . 2 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))) |
12 | orrvccel.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | uniretop 23515 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
14 | rabeq 3385 | . . . 4 ⊢ (ℝ = ∪ (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) | |
15 | 13, 14 | ax-mp 5 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} |
16 | orrvccel.5 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) | |
17 | 15, 16 | eqeltrrid 2838 | . 2 ⊢ (𝜑 → {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
18 | 3, 5, 11, 12, 17 | orvccel 31999 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 {crab 3057 ∪ cuni 4796 class class class wbr 5030 dom cdm 5525 ran crn 5526 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 (,)cioo 12821 topGenctg 16814 Topctop 21644 Clsdccld 21767 sigAlgebracsiga 31646 sigaGencsigagen 31676 𝔅ℝcbrsiga 31719 MblFnMcmbfm 31787 Probcprb 31944 rRndVarcrrv 31977 ∘RV/𝑐corvc 31992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-ac2 9963 ax-cnex 10671 ax-resscn 10672 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-oi 9047 df-dju 9403 df-card 9441 df-acn 9444 df-ac 9616 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-ioo 12825 df-topgen 16820 df-top 21645 df-bases 21697 df-cld 21770 df-esum 31566 df-siga 31647 df-sigagen 31677 df-brsiga 31720 df-meas 31734 df-mbfm 31788 df-prob 31945 df-rrv 31978 df-orvc 31993 |
This theorem is referenced by: orvcgteel 32004 orvclteel 32009 |
Copyright terms: Public domain | W3C validator |